Skip to main content

Insects Today and in the Future

  • Chapter
  • First Online:
Why Every Fly Counts

Part of the book series: Fascinating Life Sciences ((FLS))

  • 433 Accesses

Abstract

How have insects developed worldwide in recent years? Have their numbers increased or decreased? How will their development continue to progress? It is difficult to answer these questions since most insect species have not yet been discovered and accordingly, their populations have not been investigated. Estimates of their numbers range between two and ten million.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Berenbaum (2009).

  2. 2.

    Wilson (1988).

  3. 3.

    Sutton and Collins (1991). And: Townsend et al. (2002).

  4. 4.

    Kupca (2009).

  5. 5.

    Parmesan (2006) provides a good overview of the studies performed on the effects of climate warming on the quality of natural habitats with special consideration of the insect biotopes. Several of the studies cited below were taken here. Parmesan (2006).

  6. 6.

    Bradley et al. (1999).

  7. 7.

    Gibbs and Breisch (2001).

  8. 8.

    Crick et al. (1997).

  9. 9.

    Forister and Shapiro (2003).

  10. 10.

    Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (2011).

  11. 11.

    World Wide Fund for Nature WWF (2014).

  12. 12.

    Paulson (2001).

  13. 13.

    Franco et al. (2006).

  14. 14.

    Parmesan (1996).

  15. 15.

    Descimon et al. (2006).

  16. 16.

    Thomas et al. (2001).

  17. 17.

    Zaller et al. (2014).

  18. 18.

    BMELV (2007).

  19. 19.

    Harrington et al. (1999).

  20. 20.

    Deutsches Umweltbundesamt (n.d.a).

  21. 21.

    Umweltbundesamt (2013a).

  22. 22.

    Umweltbundesamt (2013b).

  23. 23.

    Carrington et al. (2013).

  24. 24.

    Müller-Motzfeld (2007).

  25. 25.

    Meise (2003).

  26. 26.

    Zimmermann et al. (2014).

  27. 27.

    Klasen et al. (2008).

  28. 28.

    Mücke et al. (2009).

  29. 29.

    Bundesamt für Naturschutz (BfN) (2011a, p. 453 ff).

  30. 30.

    Stark et al. (2009).

  31. 31.

    Klasen and Schrader (2011).

  32. 32.

    Bebber et al. (2013).

  33. 33.

    Stöckli et al. (2012).

  34. 34.

    Sobczyk (2014).

  35. 35.

    Porter et al. (2014).

  36. 36.

    FAO (2017, p. 57 ff).

  37. 37.

    United Nations Global Environment Programme (2012, p. 8).

  38. 38.

    FAO (2017, p. 14).

  39. 39.

    United Nations Department of Economic and Social Affairs (2014).

  40. 40.

    Europäische Union (2012, p. 9).

  41. 41.

    Claudio Defila (2005).

  42. 42.

    FAO (2015a).

  43. 43.

    Europäische Union (2012, p. 12).

  44. 44.

    Addendum (2017).

  45. 45.

    Europäische Union (2012, p. 5).

  46. 46.

    Ibidem, p. 9.

  47. 47.

    Deutsche Bundesregierung (2012).

  48. 48.

    United Nations Global Environment Programme (2012, p. 19).

  49. 49.

    FAO (2013, p. 10).

  50. 50.

    FAO (2013, p. 10).

  51. 51.

    Ibidem.

  52. 52.

    Statistisches Bundesamt (2014, p. 469).

  53. 53.

    Laimer and Maghuln (2015).

  54. 54.

    BMELV (2007).

  55. 55.

    International Assessment of Agricultural Knowledge, Science and Technology for Development (2009).

  56. 56.

    Bundesamt für Naturschutz (2017).

  57. 57.

    Bundesamt für Naturschutz (2017).

  58. 58.

    Doxa et al. (2012).

  59. 59.

    Bundesamt für Naturschutz (BfN) (2011a, p. 405).

  60. 60.

    FAO (2015b).

  61. 61.

    Meissle et al. (2009).

  62. 62.

    Gaspers (2009).

  63. 63.

    Baufeld et al. (2011).

  64. 64.

    Entrup and Kivelitz (2010). And: Statistisches Bundesamt (2014, p. 482 ff).

  65. 65.

    Wiggenhorn (2015).

  66. 66.

    Freier et al. (2015).

  67. 67.

    Ibidem.

  68. 68.

    Braun and Flückiger (2004). Cited in Deutsches Umweltbundesamt (n.d.b, p. 28).

  69. 69.

    FAO (2013, p. 204).

  70. 70.

    Food and Agriculture Organization FAO (2010).

  71. 71.

    Naturschutzbund Deutschland (NABU) (2008).

  72. 72.

    Food and Agriculture Organization FAO (2015).

  73. 73.

    Deutsches Umweltbundesamt (n.d.b, p. 53).

  74. 74.

    Examples for England: Fox et al. (2010). Ball and Morris (2014). Natural England (2015); for France: Le Comité français de l’Union internationale pour la conservation de la nature (UICN) (2014).

  75. 75.

    Lowe et al. (2000).

  76. 76.

    Witte (2014).

  77. 77.

    Cremer (2017).

  78. 78.

    Cremer (2012).

  79. 79.

    Barrera Medina and Vidal Munoz (2013).

  80. 80.

    Lester et al. (2017).

  81. 81.

    Invasive Species Specialist Group IUCN/SSC (2013).

  82. 82.

    Rochlin et al. (2016).

  83. 83.

    Ibidem, p. 2 ff.

  84. 84.

    Thogmartin et al. (2017).

  85. 85.

    Hidetoshi et al. (2016).

  86. 86.

    Burkle et al. (2013).

  87. 87.

    COSEWIC (2016a).

  88. 88.

    European Environment Agency (2015).

  89. 89.

    Pateman et al. (2012).

  90. 90.

    Dirzo et al. (2014).

  91. 91.

    De Vlinderstichting (2018).

  92. 92.

    Brooks et al. (2012).

  93. 93.

    Schuch (2011).

  94. 94.

    Scheuchl and Schwenninger (2015).

  95. 95.

    Ibidem.

  96. 96.

    Sorg et al. (2013). Auch: Hallmann et al. (2017).

  97. 97.

    Reichholf (2017, p. 20 ff).

  98. 98.

    Ibidem, p. 58 ff.

  99. 99.

    Ibidem, p. 20 ff.

  100. 100.

    Cordillot and Klaus (2011).

  101. 101.

    Bundesamt für Naturschutz (2011).

  102. 102.

    Vi et al. (2009).

  103. 103.

    COSEWIC (2015).

  104. 104.

    COSEWIC (2016b).

  105. 105.

    Szymanski et al. (2016).

  106. 106.

    U.S. Fish & Wildlife Service (2018).

  107. 107.

    Department of Sustainability and Environment (2009).

  108. 108.

    IUCN Bangladesh (2015).

  109. 109.

    WCS (2016).

  110. 110.

    Nieto et al. (2014).

  111. 111.

    IUCN. International Union for Conservation of Nature (2018).

  112. 112.

    Kalkmann et al. (2010).

  113. 113.

    von Swaay et al. (2010).

  114. 114.

    Schweizerisches Bundesamt für Umwelt (2012).

  115. 115.

    Schweizerisches Bundesamt für Umwelt (2011). And: Schweizerisches Bundesamt für Umwelt (2014).

  116. 116.

    Schweizerisches Bundesamt für Umwelt (2011).

  117. 117.

    Österreichisches Umweltbundesamt (2005).

  118. 118.

    Österreichisches Umweltbundesamt (2007).

  119. 119.

    Ibidem, p. 291 ff.

  120. 120.

    Ibidem, p. 167.

  121. 121.

    Ibidem, p. 41.

  122. 122.

    Ibidem, p. 19.

  123. 123.

    Bundesamt für Naturschutz (BfN) (2011b). From the moth fly family onwards: Bundesamt für Naturschutz (BfN) (2016).

  124. 124.

    Dullingera et al. (2007).

  125. 125.

    Wilson (1997).

References

  • Addendum. (2017). Wir haben weniger Platz als sie denken. https://www.addendum.org/platzverbrauch/versiegelung-platzverbrauch/. Accessed 4.7.2018.

  • Ball, S. G., & Morris, R. K. A. (2014). A review of the scarce and threatened flies of Great Britain. Part 6: Hoverflies family Syrphidae. Nature Conservation Committee.

    Google Scholar 

  • Barrera Medina, R., & Vidal Munoz, C. (2013, June 30). Primer reporte de Vespula vulgaris en Chile. In Boletin de la Sociedad Entomologica Aragonesa (S.E.A.) (No. 52, p. 277). S.E.A.

    Google Scholar 

  • Baufeld, P., Unger, J.-G., & Heimbach, U. (2011). Westlicher Maiswurzelbohrer. Informationsblatt des JKI (p. 1). Braunschweig: Julius Kühn-Institut.

    Google Scholar 

  • Bebber, D. P., et al. (2013). Crop pests and pathogens move polewards in a warming world. In Nature climate change (No. 3, p. 985 ff).

    Article  Google Scholar 

  • Berenbaum, M. (2009). Insect biodiversity—Millions and millions. In R. G. Foottit & P. H. Adler (Eds.), Insect biodiversity. Science and society (p. 576 ff). Chichester: Wiley.

    Google Scholar 

  • BMELV. (2007). Agrobiodiversität erhalten, Potentiale der Land-, Forst- und Fischereiwirtschaft erschliessen und nachhaltig nutzen (p. 12). Bonn: BMELV.

    Google Scholar 

  • Bradley, N. L., et al. (1999). Phenological changes reflect climate change in Wisconsin. Proceedings of the National Academy of Sciences of the United States of America, 96, 9701 ff.

    Article  Google Scholar 

  • Braun, S., & Flückiger, W. (2004). Bodenversauerung in Waldbeobachtungsflächen der Schweiz. Bulletin BGS, 27, 59–62.

    Google Scholar 

  • Brooks, D. R., et al. (2012). Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. Journal of Applied Ecology, 49, 1009 ff.

    Article  Google Scholar 

  • Bundesamt für Naturschutz. (2011). Rote Liste der gefährdeten Tiere, Pflanzen und Pilze Deutschlands. Vol. 3: Wirbellose Tiere (Teil 1). In Naturschutz und Biologische Vielfalt, Heft 70(3) (Vol. 70, No. 3, p. 16). Bonn-Bad Godesberg.

    Google Scholar 

  • Bundesamt für Naturschutz. (2017). Agrar report 2017 (p. 9). Bonn.

    Google Scholar 

  • Bundesamt für Naturschutz (BfN). (2011a). Vol. 3: Wirbellose Tiere (Teil 1). In Naturschutz und Biologische Vielfalt (Vol. 70, No. 3).

    Google Scholar 

  • Bundesamt für Naturschutz (BfN). (2011b). Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Vol 3: Wirbellose Tiere (Teil 1) (p. 58 ff). Bonn-Bad Godesberg: Bundesamt für Naturschutz.

    Google Scholar 

  • Bundesamt für Naturschutz (BfN). (2016). Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Vol. 4: Wirbellose Tiere (Teil 1) (p. 25 ff). Bonn-Bad Godesberg: Bundesamt für Naturschutz.

    Google Scholar 

  • Burkle, L. A., et al. (2013, March 29). Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science, 339, 1611 ff.

    Article  Google Scholar 

  • Carrington, L. B., et al. (2013). Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. Plos One, 8(3), 3 ff.

    Article  Google Scholar 

  • Cordillot, F., & Klaus, G. (2011). Gefährdete Arten in der Schweiz. Synthese Rote Listen, Stand 2010 (p. 7). Bern: Bundesamt für Umwelt.

    Google Scholar 

  • COSEWIC. (2015). COSEWIC assessment and status report on the Yellow-banded Bumble Bee Bombus terricola in Canada (p. III ff). Ottawa: Committee on the Status of Endangered Wildlife in Canada.

    Google Scholar 

  • COSEWIC. (2016a). COSEWIC assessment and status report on the Nine-spotted Lady Beetle Coccinella novemnotata in Canada (p. V f). Ottawa: Committee on the Status of Endangered Wildlife in Canada.

    Google Scholar 

  • COSEWIC. (2016b). Canadian wildlife species at risk (p. 2). Committee on the Status of Endangered Wildlife in Canada.

    Google Scholar 

  • Cremer, S. (2012, April). Die vernachlässigte Ameise, Lasius neglectus, in einem fränkischen Mehrfamilienhaus. Pest Control News, 50, 21.

    Google Scholar 

  • Cremer, S. (2017). Invasive Ameisen in Europa: Wie sie sich ausbreiten und die heimische Fauna verändern. In Rundgespräche Forum Ökologie, Vol. 46 “Tierwelt im Wandel—Wanderung, Zuwanderung, Rückgang” (p. 105 ff).

    Google Scholar 

  • Crick, H. Q., Dudley, C., & Glue, D. E. (1997). UK birds are laying eggs earlier. Nature, 388, 526.

    Google Scholar 

  • Defila, C. (2005). Phänologische Trends bei den Waldbäumen in der Schweiz | Phenological trends regarding the forest trees in Switzerland. Schweizerische Zeitschrift für Forstwesen, 156(6), 208 ff.

    Article  Google Scholar 

  • Department of Sustainability and Environment. (2009). Advisory list if threatened invertebrate fauna in Victoria. 2009 (p. 6). East Melbourne, Victoria: Department of Sustainability and Environment.

    Google Scholar 

  • Descimon, H., et al. (2006). Decline and extinction of Parnassius apollo populations in France—continued. In E. Kuhn, R. Feldman, & J. Settele (Eds.), Studies on the ecology and conservation of butterflies in Europe. Sofia, Bulgaria: Pensoft.

    Google Scholar 

  • Deutsche Bundesregierung. (2012). Nationale Nachhaltigkeitsstrategie, Fortschrittsbericht 2012 (p. 70 f). Berlin.

    Google Scholar 

  • Deutsches Umweltbundesamt. (n.d.a). Durch Umweltschutz die biologische Vielfalt erhalten (p. 62 ff). Bonn: Deutsches Umweltbundesamt.

    Google Scholar 

  • Deutsches Umweltbundesamt. (n.d.b). Durch Umweltschutz die biologische Vielfalt erhalten. Berlin: Deutsches Umweltbundesamt.

    Google Scholar 

  • Dirzo, R., et al. (2014). Defaunation in the Anthropocene. Science, 345, 401 f. https://doi.org/10.1126/sciene.1251817.

  • Doxa, A., et al. (2012). Preventing biotic homogenization of farmland bird communities: The role of high nature value farmland. Agriculture, Ecosystems and Environment 148, 85 ff.

    Article  Google Scholar 

  • Droeschmeister, et al. (2012). Landwirtschaftspolitik der EU muss umweltfreundlicher werden. Der Falke, 59, 316.

    Google Scholar 

  • Dullingera, S., Esslb, F., et al. (2007). Europe’s other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 110(18), 7342 ff.

    Google Scholar 

  • Entrup, N. L., & Kivelitz, H. (2010). Bedeutung des Maisanbaus für die Landwirtschaft. In Fachtagung 18.2.2010 (p. 9). Hannover: Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küstenschutz und Naturschutz.

    Google Scholar 

  • Europäische Union. (2012). Leitlinien für bewährte Praktiken zur Begrenzung, Milderung und Kompensierung der Bodenversiegelung. Luxemburg.

    Google Scholar 

  • European Environment Agency. (2015). The European grassland butterfly indicator: 1990–2013 (p. 37).

    Google Scholar 

  • FAO. (2013). FAO statistical yearbook 2013. World food and agriculture. Rome: FAO.

    Google Scholar 

  • FAO. (2015a). Status of the world’s soil resources. Main report (p. 52 ff). Rome.

    Google Scholar 

  • FAO. (2015b). FAO, statistics division 2015. Rome. http://faostat.fao.org/site/567/desktopdefault.aspx#ancor. Accessed 3.11.2015.

  • FAO. (2017). The future of food and agriculture. Trends and challenges. Rome.

    Google Scholar 

  • Food and Agriculture Organization FAO. (2010). Global forest resources assessment 2010 (p. 17). Rome.

    Google Scholar 

  • Food and Agriculture Organization FAO. (2015). Global forest resources assessment 2015. How are the world’s forests changing (p. 3). Rome.

    Google Scholar 

  • Forister, M. L., & Shapiro, A. M. (2003). Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biology, 9, 1130 ff.

    Google Scholar 

  • Fox, R., Warren, M. S., & Brereton, T. (2010). The butterfly Red List for Great Britain. Joint Nature Conservation Committee.

    Google Scholar 

  • Franco, A. M. A., et al. (2006). Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biology, 12, 1545 ff.

    Article  Google Scholar 

  • Freier, B., Wendt, C., & Neukampf, R. (2015). Zur Befallssituation des Maiszünslers (Ost-rinia nubilalis) und Westlichen Maiswurzelbohrers (Diabrotica virgifera virgifera) in Deutschland und deren Bekämpfung. Journal für Kulturpflanzen, 67(4), 113. Stuttgart: Verlag Eugen Ulmer KG.

    Google Scholar 

  • Gaspers, C. (2009). The European corn borer (Ostrinia nubilalis, Hbn.), its susceptibility to the Bt-toxin Cry1F, its pheromone races and its gene flow in Europe in view of an Insect Resistance Management (p. 1) (Dissertation). Universität Aachen.

    Google Scholar 

  • Gibbs, J. P., & Breisch, A. R. (2001). Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conservation Biology, 15, 1175 ff.

    Google Scholar 

  • Global 2000. (2015). Bodenatlas 2015 (p. 19). Vienna: Global 2000.

    Google Scholar 

  • Gruissem, W. (2012). Nutzpflanzen—resistent, genügsam, ertragsreich. Referat Treffpunkt Science City, 6.5.2012.

    Google Scholar 

  • Hallmann, C. A., et al. (2017, October). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. Plos One, 12(10), 1 ff.

    Google Scholar 

  • Harrington, R., Woiwod, I., & Sparks, T. (1999). Climate change and trophic interactions. Trends in Ecology & Evolution, 14, 146 ff.

    Google Scholar 

  • Hidetoshi, I., et al. (2016). Linking the continental migratory cycle of the monarch butterfly to understand its population decline. Oikos, 125(S. 1081–1091), 1082 ff. https://doi.org/10.1111/oik.03196.

    Article  Google Scholar 

  • International Assessment of Agricultural Knowledge, Science and Technology for Development. (2009). Agriculture at a crossroads, global report (p. 284). Washington, DC. Accessible online: http://www.fao.org/fileadmin/templates/est/Investment/Agriculture_at_a_Crossroads_Global_Report_IAASTD.pdf. Accessed 4.7.2019.

  • Invasive Species Specialist Group IUCN/SSC. (2013). Aliens, the invasive species bulletin. 22, 38 ff.

    Google Scholar 

  • IUCN. (2018). Brussels: International Union for Conservation of Nature, 2018/57, p. 4.

    Google Scholar 

  • IUCN Bangladesh. (2015). Red List of Bangladesh. Volume 7: Butterflies (p. 37). Dhaka, Bangladesh: IUCN, International Union for Conservation of Nature, Bangladesh Country Office.

    Google Scholar 

  • Kalkmann, V. J., et al. (2010). European Red List of dragonflies (p. 9 f). Luxembourg: International Union for Conservation of Nature.

    Google Scholar 

  • Klasen, J., et al. (2008). Einfluss von Klimaänderungen auf vektorübertragende Krankheiten. In Vortrag Umweltbundesamt (pp. 7–9).

    Google Scholar 

  • Klasen, J., & Schrader, G. (2011, March 23–25). Bettwanzen: Biologie des Parasiten und Praxis der Bekämpfung. In Fortbildung für den öffentlichen Gesundheitsdienstes 2011 (p. 27).

    Google Scholar 

  • Kupca, A. M. (2009). Ixodus ricinus (Ixodidae): Saisonale Aktivität und natürliche Infektionen mit dem FSME-Virus an ausgewählten Standorten in Bayern (p. 6) (Dissertation). Ludwig-Maximilian Universität zu München.

    Google Scholar 

  • Laimer, M., & Maghuln, F. (2015). Entstehung und Zukunft unserer Nahrungspflanzen. Journal für Ernährungsmedizin, 17(2), 19.

    Google Scholar 

  • Le Comité français de l’Union internationale pour la conservation de la nature (UICN). (2014). La Liste rouge des espèces menacées en France. Papillons de jour de France métropolitaine.

    Google Scholar 

  • Lester, P. J., et al. (2017). The long-term population dynamics of common wasps in their native and invaded range. Journal of Animal Ecology, 86, 317. British Ecological Society.

    Google Scholar 

  • Lowe, S., et al. (2000). 100 of the world’s worst invasive alien species. A selection from the global invasive species database (12 pp). Invasive Species Specialist Group (ISSG), a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). First published as special lift-out in Aliens 12, December 2000. Updated and reprinted version: November 2004, p. 3.

    Google Scholar 

  • Meise, Th. (2003). Monitoring der Resistenzentwicklung des Maiszünsler (Ostrinia nubilalis, Hübner) gegenüber Bt-Mais (p. 9) (Dissertation). Universität Göttingen.

    Google Scholar 

  • Meissle, M., et al. (2009). Pests, pesticide use and alternative options in European maize production: Current status and future prospects. Journal of Applied Entomology, 134, 363 f. Blackwell Verlag.

    Google Scholar 

  • Mücke, H.-G., et al. (2009). Gesundheitliche Anpassung an den Klimawandel (p. 7 ff). Berlin: UBA.

    Google Scholar 

  • Müller-Motzfeld, G. (2007, Oktober 13–14). Klimawandel und Faunenveränderung bei Insekten. In Gemeinsame Tagung des NABU-BFA Entomologie mit dem LFA Entomologie Berlin/Brandenburg sowie den Berliner entomologischen Fachgruppen, dem Entomologischen Verein Orion und dem Naturkundemuseum der Humboldt-Universität (p. 2).

    Google Scholar 

  • Natural England. (2015). A review of the beetles of Great Britain. The Darkling Beetles and their allies (Natural England Commissioned Report NECR148).

    Google Scholar 

  • Naturschutzbund Deutschland (NABU). (2008). Waldwirtschaft 2020. Perspektiven und Anforderungen aus Sicht des Naturschutzes (p. 6). Berlin: NABU.

    Google Scholar 

  • Nieto, A., et al. (2014). European Red List of bees (p. 10 f). Luxembourg: IUCN. International Union for Conservation of Nature.

    Google Scholar 

  • Österreichisches Umweltbundesamt. (2005). Rote Listen gefährdeter Tiere Österreichs. Teil 1 (p. 199). Vienna: Böhlau Verlag.

    Google Scholar 

  • Österreichisches Umweltbundesamt. (2007). Rote Listen gefährdeter Tiere Österreichs. Teil 2 (p. 313 ff). Vienna: Böhlau Verlag.

    Google Scholar 

  • Parmesan, C. (1996). Climate and species’ range. Nature, 382, 765 f.

    Article  Google Scholar 

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 37, 637–669.

    Article  Google Scholar 

  • Pateman, R. M., et al. (2012, May 25). Temperature-dependent alterations in host use drive rapid range expansion in a butterfly. Science, 336, 1028 ff. https://doi.org/10.1126/science.1216980.

    Article  Google Scholar 

  • Paulson, D. R. (2001). Recent odonata records from southern Florida: Effects of global warming? International Journal of Odonatology, 4, 57 ff.

    Article  Google Scholar 

  • Porter, J. R., et al. (2014). Food security and food production systems. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 500). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Reichholf, J. H. (2017). Das Verschwinden der Schmetterlinge. Hamburg: Deutsche Wildtier Stiftung.

    Google Scholar 

  • Rochlin, I., et al. (2016). Anthropogenic impacts on mosquito populations in North America over the past century. Nature Communications, 2. https://doi.org/10.1038/ncomms13604.

  • Scheuchl, E., & Schwenninger, H. R. (2015). Kritisches Verzeichnis und aktuelle Checkliste der Wildbienen Deutschlands (Hymenoptera, Anthophila) sowie Anmerkungen zur Gefährdung. Mitteilungen des Entomologischen Vereins Stuttgart, 50(1).

    Google Scholar 

  • Schuch, S. (2011). Long-term development of different grassland insect communities in Central Europe since the 1950s (p. 23) (Dissertation). Universität Göttingen.

    Google Scholar 

  • Schweizerisches Bundesamt für Umwelt. (2011). Gefährdete Arten in der Schweiz (p. 51). Bern.

    Google Scholar 

  • Schweizerisches Bundesamt für Umwelt. (2012). Rote Listen Eintagsfliegen, Steinfliegen, Köcherfliegen (p. 20). Bern.

    Google Scholar 

  • Schweizerisches Bundesamt für Umwelt. (2014). Rote Liste der Tagfalter und Widderchen (p. 32 ff). Bern.

    Google Scholar 

  • Sobczyk, T. (2014). Der Eichenprozessionsspinner in Deutschland. In BfN-Skripten (Vol. 365, p. 27 ff).

    Google Scholar 

  • Sorg, M., et al. (2013). Ermittlung der Biomassen flugaktiver Insekten im Naturschutzgebiet Orbroicher Bruch mit Malaise-Fallen in den Jahren 1989 und 2013. Mitteilungen aus dem Entomologischen Verein Krefeld, 1, 1–5.

    Google Scholar 

  • Stark, K., et al. (2009). Die Auswirkungen des Klimawandels. Welche neuen Infektionskrankheiten und gesundheitlichen Probleme sind zu erwarten? Bundesgesundheitsblatt, 1.

    Article  Google Scholar 

  • Statistisches Bundesamt. (2014). Statistisches Jahrbuch 2014. Wiesbaden: Statistisches Bundesamt.

    Google Scholar 

  • Stöckli, S., et al. (2012). Einfluss der Klimaänderung auf den Apfelwickler. Schweizer Zeitschrift für Obst- und Weinbau, 19(12), 7 ff.

    Google Scholar 

  • Sutton, S. L., & Collins, N. M. (1991). Insects and tropical forest conservation. In The conservation of insects and their habitats (pp. 405–424). London: Academic Press.

    Google Scholar 

  • Szymanski, J., et al. (2016, June). Rusty patched bumble bee (Bombus affinis) species status assessment (Final Report, Version 1, p. 98 ff). U.S. Fish and Wildlife Services.

    Google Scholar 

  • Thogmartin, W. E., et al. (2017). Monarch butterfly population decline in North America: Identifying the threatening processes. Royal Society Open Science, 4, 2. http://dx.doi.org/10.1098/rsos.170760.

    Article  Google Scholar 

  • Thomas, C. D., et al. (2001). Ecological and evolutionary processes at expanding range margins. Nature, 411, 577 ff.

    Article  Google Scholar 

  • Townsend, C. R., et al. (2002). Ökologie (2nd ed., p. 434). Heidelberg/Berlin: Springer Verlag.

    Google Scholar 

  • Umweltbundesamt. (2013a). Beobachteter Klimawandel. 23.07.2015. www.umwelt-bundesamt.de/themen/klima-energie/klimawandel/beobachteter-klimawandel. Accessed 4.11.2015.

  • Umweltbundesamt. (2013b, July 25). Zu erwartende Klimaänderungen bis 2100. www.umweltbundesamt.de/themen/klima-energie/klimawandel/zu-erwartende-klimaaenderungen-bis-2100. Accessed 4.11.2015.

  • United Nations Department of Economic and Social Affairs. (2014). World urbanization prospects. The 2014 revision (p. 1). United Nations.

    Google Scholar 

  • United Nations Global Environment Programme. (2012). GEO global environment outlook (Vol. 5). UN.

    Google Scholar 

  • United Nations Population Division. (2013). World population prospects. The 2012 revision (p. XV). New York.

    Google Scholar 

  • U.S. Fish & Wildlife Service. (2018). ECOS Environmental Conservation Online System, listed species reports: Invertebrate animals. https://ecos.fws.gov/ecp/species-reports. Accessed June 21, 2018.

  • Vi, J.-C., et al. (Eds.). (2009). Wildlife in a changing world—An analysis of the 2008 IUCN Red List of threatened species (p. 17). IUCN: Gland, Switzerland.

    Google Scholar 

  • Vlinderstichting. (2018). De Vlinderstichting in 2017. Jaarverslag 2017 (p. 15 ff).

    Google Scholar 

  • von Swaay, C., et al. (2010) European Red List of butterflies. European Red List of dragonflies (p. 9 f). Luxembourg: International Union for Conservation of Nature.

    Google Scholar 

  • WCS. (2016). National threatened species for Uganda (p. 8).

    Google Scholar 

  • Wiggenhorn, R. (2015). Auftreten tierischer Schädlinge in Mais und Strategien zur Bekämpfung. In Fachtagung des Deutschen Maiskomitees e.V. (DMK) am 20. Oktober 2015 in Saerbeck (p. 10). Saerbeck: Deutsches Maiskomitee.

    Google Scholar 

  • Wilson, E. O. (1988). The current state of biological diversity. In E. O. Wilson (Ed.), Biodiversity (p. 4 ff). Washington: Washington National Academic Press.

    Google Scholar 

  • Wilson, E. O. (1997). Der Wert der Vielfalt, Die Bedrohung des Artenreichtums und das Überleben des Menschen (p. 171). Munich: Piper Verlag.

    Google Scholar 

  • Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen WBGU. (2011). Welt im Wandel. Gesellschaftsvertrag für eine Grosse Transformation (p. 38 f). Berlin: WBGU.

    Google Scholar 

  • Witte, V. (2014). Invasive Ameisen: Superkolonien—super Dominanz. In Rundgespräche der Kommission für Ökologie, Vol. 43 »Soziale Insekten in einer sich wandelnden Welt« (p. 125). Munich: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • World Wide Fund for Nature WWF. (2014). Auswirkungen des Klimawandels auf Arten weltweit. Hintergrundinformationen (p. 1). WWF.

    Google Scholar 

  • Zaller, J. G., et al. (2014). Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types. Frontiers in Environmental Science, 2, 44. https://doi.org/10.3389/fenvs.2014.00044.

  • Zimmermann, O. et al. (2014, September 23–26). Die Bekämpfung von bivoltinen Maiszünsler Populationen—ein Fazit aus Forschung & Praxis. In 59. Deutsche Pflanzenschutztagung „Forschen—Wissen—Pflanzen schützen: Ernährung sichern!‟ (p. 485). Freiburg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Dietrich Reckhaus .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reckhaus, HD. (2019). Insects Today and in the Future. In: Why Every Fly Counts. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31229-9_3

Download citation

Publish with us

Policies and ethics