Skip to main content

Collapse Models: Main Properties and the State of Art of the Experimental Tests

  • Conference paper
  • First Online:
Advances in Open Systems and Fundamental Tests of Quantum Mechanics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 237))

Abstract

Collapse models represent one of the possible solutions to the measurement problem.  These models modify the Schrödinger dynamics with nonlinear and stochastic terms, which guarantee the localization in space of the wave function avoiding macroscopic superpositions, like that described in Schrödinger’s cat paradox.  The Ghirardi–Rimini–Weber (GRW) and the Continuous Spontaneous Localization (CSL) models are the most studied among the collapse models. Here, we briefly summarize the main features of these models and the advances in their experimental investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It possible to define the model also through a stochastic differential equation describing the interaction with a Poissonian noise, see [6, 7].

  2. 2.

    In their original formulation [2], Ghirardi, Rimini, and Weber considered the possibility that different particles can have different collapse rate \(\lambda _i\). However, this is not required and in literature only one \(\lambda \), representing the collapse rate for a nucleon, is considered. For composite objects, the corresponding total collapse rate can be calculated through the amplification mechanism discussed below.

References

  1. A. Bassi, G.C. Ghirardi, Phys. Rep. 379, 257 (2003), http://www.sciencedirect.com/science/article/pii/S0370157303001030

  2. G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986), https://doi.org/10.1103/PhysRevD.34.470

  3. P. Pearle, Phys. Rev. A 39, 2277 (1989), https://doi.org/10.1103/PhysRevA.39.2277

  4. G.C. Ghirardi, P. Pearle, A. Rimini, Phys. Rev. A 42, 78 (1990), https://doi.org/10.1103/PhysRevA.42.78

  5. S.L. Adler, J. Phys. A 40, 2935 (2007), http://stacks.iop.org/1751-8121/40/i=12/a=S03

  6. A. Smirne, B. Vacchini, A. Bassi, Phys. Rev. A 90, 062135 (2014), https://doi.org/10.1103/PhysRevA.90.062135

  7. M. Toroš, S. Donadi, A. Bassi, J. Phys. A 49, 355302 (2016), https://iopscience.iop.org/article/10.1088/1751-8113/49/35/355302/meta

  8. N. Gisin, Helv. Phys. Acta 62, 363 (1989)

    MathSciNet  Google Scholar 

  9. S.L. Adler, A. Bassi, J. Phys. A 40, 15083 (2007), http://stacks.iop.org/1751-8121/40/i=50/a=012

  10. T. Kovachy et al., Nature 528, 530 (2015a), https://doi.org/10.1038/nature16155

  11. S. Eibenberger et al., Phys. Chem. Chem. Phys. 15, 14696 (2013), https://doi.org/10.1039/C3CP51500A

  12. M. Toroš, G. Gasbarri, A. Bassi, Phys. Lett. A 381, 3921 (2017), http://www.sciencedirect.com/science/article/pii/S0375960117309465

  13. K. Hornberger, J.E. Sipe, M. Arndt, Phys. Rev. A 70, 053608 (2004), https://doi.org/10.1103/PhysRevA.70.053608

  14. M. Toroš, A. Bassi, J. Phys. A 51, 115302 (2018), http://stacks.iop.org/1751-8121/51/i=11/a=115302

  15. K.C. Lee et al., Science 334, 1253 (2011), http://science.sciencemag.org/content/334/6060/1253

  16. S. Belli et al., Phys. Rev. A 94, 012108 (2016), https://doi.org/10.1103/PhysRevA.94.012108

  17. T. Kovachy et al., Phys. Rev. Lett. 114, 143004 (2015b), https://doi.org/10.1103/PhysRevLett.114.143004

  18. M. Bilardello, S. Donadi, A. Vinante, A. Bassi, Phys. A 462, 764 (2016), http://www.sciencedirect.com/science/article/pii/S0378437116304095

  19. O. Usenko, A. Vinante, G. Wijts, T.H. Oosterkamp, App. Phys. Lett. 98, 133105 (2011), https://doi.org/10.1063/1.3570628

  20. A. Vinante et al., Phys. Rev. Lett. 116, 090402 (2016), https://doi.org/10.1103/PhysRevLett.116.090402

  21. A. Vinante et al., Phys. Rev. Lett. 119, 110401 (2017), https://doi.org/10.1103/PhysRevLett.119.110401

  22. A. Vinante et al. (AURIGA Collaboration), Class. Quantum Gravity 23, S103 (2006), http://stacks.iop.org/0264-9381/23/i=8/a=S14

  23. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 131103 (2016a), https://doi.org/10.1103/PhysRevLett.116.131103

  24. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016b), https://doi.org/10.1103/PhysRevLett.116.061102

  25. M. Armano et al., Phys. Rev. Lett. 116, 231101 (2016), https://doi.org/10.1103/PhysRevLett.116.231101

  26. M. Carlesso, A. Bassi, P. Falferi, A. Vinante, Phys. Rev. D 94, 124036 (2016), https://doi.org/10.1103/PhysRevD.94.124036

  27. B. Helou, B.J.J. Slagmolen, D.E. McClelland, Y. Chen, Phys. Rev. D 95, 084054 (2017), https://doi.org/10.1103/PhysRevD.95.084054

  28. M. Armano et al., Phys. Rev. Lett. 120, 061101 (2018), https://doi.org/10.1103/PhysRevLett.120.061101

  29. C.E. Aalseth et al. (The IGEX Collaboration), https://doi.org/10.1103/PhysRevC.59.2108 Phys. Rev. C 59, 2108 (1999)

  30. K. Piscicchia et al., Entropy 19 (2017), http://www.mdpi.com/1099-4300/19/7/319

  31. S.L. Adler, A. Vinante, Phys. Rev. A 97, 052119 (2018), https://doi.org/10.1103/PhysRevA.97.052119

  32. M. Bahrami, Phys. Rev. A 97, 052118 (2018), https://doi.org/10.1103/PhysRevA.97.052118

  33. S. L. Alder, A. Bassi, M. Carlesso, A. Vinante, Phys. Rev. D 99, 103001 (2019), https://journals.asp.org/prd/abstract/10.1103/PhysRevD.99.103001

  34. M. Carlesso, M. Paternostro, H. Ulbricht, A. Vinante, A. Bassi, New J. Phys. 20, 083022 (2018a), http://stacks.iop.org/1367-2630/20/i=8/a=083022

  35. R. Tumulka, J. Stat. Phys. 125, 821 (2006), https://doi.org/10.1007/s10955-006-9227-3

  36. D.J. Bedingham, Found. Phys. 41, 686 (2011), https://doi.org/10.1007/s10701-010-9510-7

  37. A. Smirne, A. Bassi, Sci. Rep. 5, 12518 (2015), https://doi.org/10.1038/srep12518

  38. J. Nobakht, M. Carlesso, S. Donadi, M. Paternostro, A. Bassi, Phys. Rev. A 98, 042109 (2018), https://doi.org/10.1103/PhysRevA.98.042109

  39. S.L. Adler, A. Bassi, J. Phys. A 41, 395308 (2008), http://stacks.iop.org/1751-8121/41/i=39/a=395308

  40. S.L. Adler, A. Bassi, S. Donadi, J. Phys. A 46, 245304 (2013), http://stacks.iop.org/1751-8121/46/i=24/a=245304

  41. S. Donadi, D.-A. Deckert, A. Bassi, Ann. Phys. 340, 70 (2014), http://www.sciencedirect.com/science/article/pii/S0003491613002443

  42. A. Bassi, S. Donadi, Phys. Lett. A 378, 761 (2014), http://www.sciencedirect.com/science/article/pii/S0375960114000073

  43. M. Carlesso, L. Ferialdi, A. Bassi, Eur. Phys. J. D 72, 159 (2018b), https://doi.org/10.1140/epjd/e2018-90248-x

  44. B. Schrinski, B.A. Stickler, K. Hornberger, J. Opt. Soc. Am. B 34, C1 (2017), http://josab.osa.org/abstract.cfm?URI=josab-34-6-C1

  45. M. Carlesso, A. Vinante, A. Bassi, Phys. Rev. A 98, 022122 (2018c), https://doi.org/10.1103/PhysRevA.98.022122

  46. B. Collett, P. Pearle, Found. Phys. 33, 1495 (2003), https://doi.org/10.1023/A:1026048530567

  47. D. Goldwater, M. Paternostro, P.F. Barker, Phys. Rev. A 94, 010104(R) (2016), https://doi.org/10.1103/PhysRevA.94.010104

  48. R. Kaltenbaek et al., EPJ Quantum Technol. 3, 5 (2016), https://doi.org/10.1140/epjqt/s40507-016-0043-7

  49. S. McMillen et al., Phys. Rev. A 95, 012132 (2017), https://doi.org/10.1103/PhysRevA.95.012132

  50. R. Mishra, A. Vinante, T.P. Singh, Phys. Rev. A 98, 052121 (2018), https://doi.org/10.1103/PhysRevA.98.052121

Download references

Acknowledgements

MC acknowledges the financial support from the H2020 FET Project TEQ (grant n.766900) and the support from the COST Action QTSpace (CA15220), INFN and the University of Trieste. SD acknowledges the financial support from the Fetzer Franklin Foundation and the support from the COST Action QTSpace (CA15220) and the Frankfurt Institute for Advanced Studies (FIAS). Both the authors are grateful for the support offered by the WE-Heraeus-Stiftung for the WE-Heraeus-Seminars entitled “Advances in open systems and fundamental tests of quantum mechanics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Carlesso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carlesso, M., Donadi, S. (2019). Collapse Models: Main Properties and the State of Art of the Experimental Tests. In: Vacchini, B., Breuer, HP., Bassi, A. (eds) Advances in Open Systems and Fundamental Tests of Quantum Mechanics. Springer Proceedings in Physics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-030-31146-9_1

Download citation

Publish with us

Policies and ethics