Skip to main content

Shallow Water Waves

  • Chapter
  • First Online:
Theoretical Fluid Dynamics

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1753 Accesses

Abstract

In shallow water waves, the water is shallow with respect to the wave, in the sense that the wavelength is (much) larger than the water depth, and the whole body of water, in every depth, is approximately equally affected by the wave. If the wave has sufficient lateral extent, the surfaces of equal wave phase (wavefronts) are vertical planes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz, M., and I.A. Stegun. 1964. Handbook of mathematical functions. New York: Dover.

    MATH  Google Scholar 

  • Ahlfors, L.V. 1966. Complex analysis, 2nd ed. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Airy, G.B. 1845. Tides and waves. In Encyclopaedia metropolitana, vol. 5, 241. London.

    Google Scholar 

  • Aldersey-Williams, H. 2016. The tide: The science and stories behind the greatest force on Earth. New York: W. W. Norton & Company.

    Google Scholar 

  • Barcilon, V., and D.R. MacAyeal. 1993. Steady flow of a viscous ice stream across a no-slip/free-slip transition at the bed. Journal of Glaciology 39: 167.

    Article  ADS  Google Scholar 

  • Carrier, G.F., and H.P. Greenspan. 1958. Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics 4: 97.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Cartwright, D.E. 1999. Tides – A scientific history. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chambers, Ll.G. 1954. Diffraction by a half-plane. Proceedings of the Edinburgh Mathematical Society 10: 92.

    Google Scholar 

  • Chambers, Ll.G. 1964. Long waves on a rotating Earth in the presence of a semi-infinite barrier. Proceedings of the Edinburgh Mathematical Society 14: 25.

    Google Scholar 

  • Copson, E.T. 1946. On an integral equation arising in the theory of diffraction. Quarterly Journal of Mathematics 17: 19.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Crapper, G.D. 1984. Introduction to water waves. Hemel: Ellis Horwood Ltd.

    MATH  Google Scholar 

  • Crease, J. 1956. Long waves on a rotating Earth in the presence of a semi-infinite barrier. Journal of Fluid Mechanics 1: 86.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Crease, J. 1958. The propagation of long waves into a semi-infinite channel in a rotating system. Journal of Fluid Mechanics 4: 306.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Crighton, D.G., and F.G. Leppington. 1974. Radiation properties of the semi-infinite vortex sheet: The initial-value problem. Journal of Fluid Mechanics 64: 393.

    Article  ADS  MATH  Google Scholar 

  • Darwin, G.H. 1902. Tides. Encyclopaedia Britannica, 9th ed. https://www.1902encyclopedia.com/T/TID/tides.html.

  • Erdélyi, A. (ed.). 1954. Tables of integral transforms, vol. II. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Feldmeier, A. 2013. Theoretische Mechanik. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Flügge, S. (ed.). 1961. Crystal optics, diffraction, encyclopedia of physics, vol. XXV/1. Berlin: Springer.

    Google Scholar 

  • Gjevik, B. 2009. Flo og fjære langs kysten av Norge og Svalbard (in Norwegian). Oslo: Farleia Forlag.

    Google Scholar 

  • Grossman, N. 2005. A \(C^\infty \) Lagrange inversion theorem. The American Mathematical Monthly 112: 512.

    MATH  Google Scholar 

  • Hedstrom, G.W. 1979. Nonreflecting boundary conditions for nonlinear hyperbolic systems. Journal of Computational Physics 30: 222.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Hibberd, S., and D.H. Peregrine. 1979. Surf and run-up on a beach: A uniform bore. Journal of Fluid Mechanics 95: 323.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Hutter, K., and V.O.S. Olunloyo. 1980. On the distribution of stress and velocity in an ice strip, which is partly sliding over and partly adhering to its bed, by using a Newtonian viscous approximation. Proceedings of the Royal Society of London A 373: 385.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Hutter, K., Y. Wang, and I.P. Chubarenko. 2012. Physics of lakes: Lakes as oscillators, vol. 2. Berlin: Springer.

    Google Scholar 

  • Kapoulitsas, G.M. 1977. Diffraction of long waves by a semi-infinite vertical barrier on a rotating Earth. International Journal of Theoretical Physics 16: 763.

    Article  ADS  Google Scholar 

  • Karp, S.N. 1950. Wiener-Hopf techniques and mixed boundary value problems. Communications on Pure and Applied Mathematics 3: 201.

    Article  MATH  MathSciNet  Google Scholar 

  • Keller, H., D. Levine, and G. Whitham. 1960. Motion of a bore over a sloping beach. Journal of Fluid Mechanics 7: 302.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Lamb, H. 1932. Hydrodynamics. Cambridge: Cambridge University Press; New York: Dover (1945).

    Google Scholar 

  • LeBlond, P.H., and L.A. Mysak. 1978. Waves in the ocean. Elsevier oceanography series 20. Amsterdam: Elsevier Scientific Publishing Company.

    Google Scholar 

  • Le Lacheur, E.A. 1924. Tidal currents in the open sea: Subsurface tidal currents at Nantucket Shoals Light Vessel. Geographical Review 14: 282.

    Article  Google Scholar 

  • Manton, M.J., L.A. Mysak, and R.E. McGorman. 1970. The diffraction of internal waves by a semi-infinite barrier. Journal of Fluid Mechanics 43: 165.

    Article  ADS  MATH  Google Scholar 

  • Markushevich, A.I. 1965. Theory of functions of a complex variable, vol. I. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • McCowan, J. 1892. On the theory of long waves and its application to the tidal phenomena of rivers and estuaries. Philosophical Magazine Series 5, 33: 250.

    Google Scholar 

  • Mortimer, C.H. 1975. Environmental status of the Lake Michigan region. Vol. 2. Physical limnology of Lake Michigan. Part 1. Physical characteristics of Lake Michigan and its responses to applied forces, ANL/ES-40 Vol. 2 Environmental and Earth Sciences, National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia. Available as pdf-file.

    Google Scholar 

  • Noble, B. 1958. The Wiener-Hopf technique. London: Pergamon Press.

    MATH  Google Scholar 

  • Proudman, J. 1953. Dynamical oceanography. London: Methuen & Co.

    Google Scholar 

  • Proudman, J. 1955. The propagation of tide and surge in an estuary. Proceedings of the Royal Society of London A 231: 8.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Proudman, J. 1957. Oscillations of tide and surge in an estuary of finite length. Journal of Fluid Mechanics 2: 371.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Proudman, J. 1958. On the series that represent tides and surges in an estuary. Journal of Fluid Mechanics 3: 411.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Proudman, J., and A.T. Doodson. 1924. The principal constituent of the tides of the North Sea. Philosophical Transactions of the Royal Society of London A 224: 185.

    Article  ADS  Google Scholar 

  • Rayleigh, Lord. 1914. On the theory of long waves and bores. Proceedings of the Royal Society of London A 90: 324.

    Article  ADS  MATH  Google Scholar 

  • Schmitz, H.P. 1965. Modellrechnungen zur deep water surge Entwicklung – das external surge Problem. Deutsche Hydrographische Zeitschrift 18: 49.

    Article  ADS  Google Scholar 

  • Schwinger, J.S. 1946. Fourier transform solution of integral equations. M. I. T. Radiation Laboratory Report.

    Google Scholar 

  • Sedov, L.I. 1946. The movement of air in a strong explosion. Doklady Akademii nauk SSSR 52: 17.

    Google Scholar 

  • Shen, M.C., and R.E. Meyer. 1963. Climb of a bore on a beach. III. Run-up. Journal of Fluid Mechanics 16: 113

    Google Scholar 

  • Sommerfeld, A. 1896. Mathematische Theorie der Diffraction. Mathematische Annalen 47: 317.

    Article  MATH  MathSciNet  Google Scholar 

  • Stoker, J.J. 1948. The formation of breakers and bores. The theory of nonlinear wave propagation in shallow water and open channels. Communications on Pure and Applied Mathematics 1: 1.

    Article  MATH  MathSciNet  Google Scholar 

  • Stoker, J.J. 1957. Water waves. The mathematical theory with applications. New York: Interscience Publishers.

    MATH  Google Scholar 

  • Taylor, G.I. 1922. Tidal oscillations in gulfs and rectangular basins. Proceedings of the London Mathematical Society, Series 2, 20: 148.

    Google Scholar 

  • Taylor, G.I. 1950. The formation of a blast wave by a very intense explosion. Proceedings of the Royal Society of London A 201: 159.

    Article  ADS  MATH  Google Scholar 

  • Thorade, H. 1941. Ebbe und Flut. Ihre Entstehung und ihre Wandlungen. Berlin: Springer.

    Google Scholar 

  • Tuck, E.O., and L.-S. Hwang. 1972. Long wave generation on a sloping beach. Journal of Fluid Mechanics 51: 449.

    Article  ADS  MATH  Google Scholar 

  • Wehausen, J.V., and E.V. Laitone. 1960. Surface waves. In Handbuch der Physik = Encyclopedia of Physics, vol. 3/9, Strömungsmechanik 3, ed. S. Flügge and C. Truesdell, 446. Berlin: Springer.

    Google Scholar 

  • Whewell, W. 1836. Researches on the tides. Sixth series. On the results of an extensive system of tide observations made on the coasts of Europe and America in June 1835. Philosophical Transactions of the Royal Society of London 126: 289.

    Google Scholar 

  • Whewell, W. 1848. The Bakerian Lecture. – Researches on the tides. Thirteenth series. On the tides of the pacific, and on the diurnal inequality. Philosophical Transactions of the Royal Society of London 138: 1.

    Google Scholar 

  • Wiener, N., and E. Hopf. 1931. Über eine Klasse singulärer Integralgleichungen. Sitzungsberichte der preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse XXXI: 696.

    Google Scholar 

  • Williams, W.E. 1964. Note on the scattering of long waves in a rotating system. Journal of Fluid Mechanics 20: 115.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Zel’dovich, Ya.B., and Yu.P. Raizer. 1967. Physics of shock waves and high-temperature hydrodynamic phenomena, vol. 2. New York: Academic Press; Mineola: Dover (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Feldmeier .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feldmeier, A. (2019). Shallow Water Waves. In: Theoretical Fluid Dynamics. Theoretical and Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-31022-6_8

Download citation

Publish with us

Policies and ethics