Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

This chapter provides an overview of the background knowledge of NOMA from an information theoretic perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benjebbour, A., Li, A., Saito, Y., Kishiyama, Y., Harada, A., & Nakamura, T. (2013). System-level performance of downlink NOMA for future LTE enhancements. In Proceedings of IEEE Global Communications Conference (GLOBECOM) Workshops (pp. 66–70).

    Google Scholar 

  • Bergmans, P. (1974). A simple converse for broadcast channels with additive white Gaussian noise (corresp.). IEEE Transactions on Information Theory, 20, 279–280.

    Article  MathSciNet  Google Scholar 

  • Botsinis, P., Alanis, D., Babar, Z., Nguyen, H., Chandra, D., Ng, S. X., et al. (2016). Quantum-aided multi-user transmission in non-orthogonal multiple access systems. IEEE Access, 4, 7402–7424.

    Article  Google Scholar 

  • Cover, T. M. (1972). Broadcast channels. IEEE Transactions on Information Theory, 18, 2–14.

    Article  MathSciNet  Google Scholar 

  • Cui, J., Ding, Z., & Fan, P. (2016). A novel power allocation scheme under outage constraints in NOMA systems. IEEE Signal Processing Letters, 23, 1226–1230.

    Article  Google Scholar 

  • Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letters, 21, 1501–1505.

    Article  Google Scholar 

  • Hanzo, L., Haas, H., Imre, S., O’Brien, D., Rupp, M., & Gyongyosi, L. (2012). Wireless myths, realities, and futures: From 3G/4G to optical and quantum wireless. IEEE Proceedings, 100, 1853–1888.

    Google Scholar 

  • Huang, X., & Yang, N. (2019). On the block error performance of short-packet non-orthogonal multiple access systems. In IEEE Proceedings of International Communication Conference (ICC) (pp. 1–7).

    Google Scholar 

  • Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50, 100–107.

    Article  Google Scholar 

  • Liu, L., Yuen, C., Guan, Y. L., & Li, Y. (2016). Capacity-achieving iterative LMMSE detection for MIMO-NOMA systems. IEEE Transactions on Signal Processing, 67(7), 1758–1773. 1 April 2019.

    Google Scholar 

  • Marshoud, H., Kapinas, V. M., Karagiannidis, G. K., & Muhaidat, S. (2016). Non-orthogonal multiple access for visible light communications. IEEE Photonics Technology Letters, 28, 51–54.

    Article  Google Scholar 

  • Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013a). System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of IEEE Annual Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), London.

    Google Scholar 

  • Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013b). Non-orthogonal multiple access (NOMA) for cellular future radio access. In IEEE Proceedings of Vehicular Technology Conference (VTC), Dresden (pp. 1–5).

    Google Scholar 

  • Shi, S., Yang, L., & Zhu, H. (2016). Outage balancing in downlink non-orthogonal multiple access with statistical channel state information. IEEE Transactions on Wireless Communications, 15, 4718–4731.

    Google Scholar 

  • Shieh, S. L., & Huang, Y. C. (2016). A simple scheme for realizing the promised gains of downlink non-orthogonal multiple access. IEEE Transactions on Communications, 64, 1624–1635.

    Article  Google Scholar 

  • Shin, W., Vaezi, M., Lee, B., Love, D. J., Lee, J., & Poor, H. V. (2016). Non-orthogonal multiple access in multi-cell networks: Theory, performance, and practical challenges. arXiv preprint arXiv:1611.01607.

    Google Scholar 

  • So, J., & Sung, Y. (2016). Improving non-orthogonal multiple access by forming relaying broadcast channels. IEEE Communications Letters, 20, 1816–1819.

    Article  Google Scholar 

  • Sun, X., Yan, S., Yang, N., Ding, Z., Shen, C., & Zhong, Z. (2018). Short-packet downlink transmission with non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 17, 4550–4564.

    Article  Google Scholar 

  • Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Letters, 22, 1647–1651.

    Article  Google Scholar 

  • Xing, H., Liu, Y., Nallanathan, A., Ding, Z., & Poor, H. V. (2018). Optimal Throughput Fairness Tradeoffs for Downlink Non-Orthogonal Multiple Access Over Fading Channels. In IEEE Transactions on Wireless Communications, 17(6), vol. 17, no. 6, pp. 3556–3571, June 2018.

    Google Scholar 

  • Xu, P., Ding, Z., Dai, X., & Poor, H. V. (2015). A new evaluation criterion for non-orthogonal multiple access in 5G software defined networks. IEEE Access, 3, 1633–1639.

    Article  Google Scholar 

  • Xu, P., Yuan, Y., Ding, Z., Dai, X., & Schober, R. (2016). On the outage performance of non-orthogonal multiple access with one-bit feedback. IEEE Transactions on Wireless Communications, 15, 6716–6730.

    Article  Google Scholar 

  • Yang, Z., Ding, Z., Fan, P., & Karagiannidis, G. K. (2016). On the performance of non-orthogonal multiple access systems with partial channel information. IEEE Transactions on Communications, 64, 654–667.

    Article  Google Scholar 

  • Yin, L., Popoola, W. O., Wu, X., & Haas, H. (2016). Performance evaluation of non-orthogonal multiple access in visible light communication. IEEE Transactions on Communications, 64, 5162–5175.

    Article  Google Scholar 

  • Yu, H., Fei, Z., Yang, N., & Ye, N. (2018). Optimal design of resource element mapping for sparse spreading non-orthogonal multiple access. IEEE Wireless Communications Letters, 7, 744–747.

    Article  Google Scholar 

  • Zhang, X., Gao, Q., Gong, C., & Xu, Z. (2016). Interference management and power allocation for NOMA visible light communications network. arXiv preprint. arXiv:1610.07327.

    Google Scholar 

  • Zhang, Y., Wang, H.-M., Zheng, T.-X., & Yang, Q. (2017). Energy-efficient transmission design in non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 66, 2852–2857.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Qin, Z., Ding, Z. (2020). What Is NOMA?. In: Non-Orthogonal Multiple Access for Massive Connectivity. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-030-30975-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30975-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30974-9

  • Online ISBN: 978-3-030-30975-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics