Skip to main content

Knowledge Graph Embedding for Ecotoxicological Effect Prediction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11779))

Abstract

Exploring the effects a chemical compound has on a species takes a considerable experimental effort. Appropriate methods for estimating and suggesting new effects can dramatically reduce the work needed to be done by a laboratory. In this paper we explore the suitability of using a knowledge graph embedding approach for ecotoxicological effect prediction. A knowledge graph has been constructed from publicly available data sets, including a species taxonomy and chemical classification and similarity. The publicly available effect data is integrated to the knowledge graph using ontology alignment techniques. Our experimental results show that the knowledge graph based approach improves the selected baselines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Chemical and compound are used interchangeably.

  2. 2.

    NIVA Institute: https://www.niva.no/en.

  3. 3.

    NIVA Risk Assessment Database: https://www.niva.no/en/projectweb/radb.

  4. 4.

    The OWL 2 ontology language provides more expressive constructors. Note that the graph projection of an OWL 2 ontology can be seen as a knowledge graph (e.g., [1]).

  5. 5.

    The models are implemented with Keras [7]. Data and codes available from: https://github.com/Erik-BM/NIVAUC.

References

  1. Agibetov, A., et al.: Supporting shared hypothesis testing in the biomedical domain. J. Biomed. Semant. 9(1), 9:1–9:22 (2018)

    Article  Google Scholar 

  2. Agibetov, A., Samwald, M.: Global and local evaluation of link prediction tasks with neural embeddings. In: 4th Workshop on Semantic Deep Learning (ISWC Workshop), pp. 89–102 (2018)

    Google Scholar 

  3. Alshahrani, M., Khan, M.A., Maddouri, O., Kinjo, A.R., Queralt-Rosinach, N., Hoehndorf, R.: Neuro-symbolic representation learning on biological knowledge graphs. Bioinformatics 33(17), 2723–2730 (2017)

    Article  Google Scholar 

  4. Arnaout, H., Elbassuoni, S.: Effective searching of RDF knowledge graphs. Web Semant.: Sci. Serv. Agents World Wide Web 48 (2018)

    Article  Google Scholar 

  5. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems 26, pp. 2787–2795. Curran Associates, Inc. (2013)

    Google Scholar 

  6. ChEBI-ontology: The European bioinformatics institute (2019). https://www.ebi.ac.uk/chebi/

  7. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  8. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  9. US EPA: Ecotoxicology knowledgebase (ECOTOX) (2019). https://cfpub.epa.gov/ecotox/

  10. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38721-0

    Book  MATH  Google Scholar 

  11. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: logic-based and scalable ontology matching. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_18

    Chapter  Google Scholar 

  12. Jimenez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks, I.: Large-scale interactive ontology matching: algorithms and implementation. In: The 20th European Conference on Artificial Intelligence (ECAI), pp. 444–449. IOS Press (2012)

    Google Scholar 

  13. Kadlec, R., Bajgar, O., Kleindienst, J.: Knowledge base completion: baselines strike back. CoRR abs/1705.10744 (2017). http://arxiv.org/abs/1705.10744

  14. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  15. Myklebust, E.B., Jimenez-Ruiz, E., Rudjord, Z.C., Wolf, R., Tollefsen, K.E.: Integrating semantic technologies in environmental risk assessment: a vision. In: 29th Annual Meeting of the Society of Environmental Toxicology and Chemistry (SETAC) (2019)

    Google Scholar 

  16. NCBI-Taxonomy: The national center for biotechnology information (2019). https://www.ncbi.nlm.nih.gov/taxonomy

  17. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge graphs. CoRR abs/1510.04935 (2015). http://arxiv.org/abs/1510.04935

  18. Nikolova, N., Jaworska, J.: Approaches to measure chemical similarity – a review. QSAR Comb. Sci. 22(9–10), 1006–1026 (2003)

    Article  Google Scholar 

  19. Pradeep, P., Povinelli, R.J., White, S., Merrill, S.J.: An ensemble model of QSAR tools for regulatory risk assessment. J. Cheminform. 8, 48 (2016)

    Article  Google Scholar 

  20. PubChem: National Institutes of Health (NIH) (2019). https://pubchem.ncbi.nlm.nih.gov/

  21. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  22. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  23. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. CoRR abs/1412.6575 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the grant 272414 from the Research Council of Norway (RCN), the MixRisk project (RCN 268294), the AIDA project, The Alan Turing Institute under the EPSRC grant EP/N510129/1, the SIRIUS Centre for Scalable Data Access (RCN 237889), the Royal Society, EPSRC projects DBOnto, \(\text {MaSI}^{\text {3}}\) and \(\text {ED}^{\text {3}}\). We would also like to thank Martin Giese and Zofia C. Rudjord for their contribution in early stages of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik B. Myklebust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Myklebust, E.B., Jimenez-Ruiz, E., Chen, J., Wolf, R., Tollefsen, K.E. (2019). Knowledge Graph Embedding for Ecotoxicological Effect Prediction. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11779. Springer, Cham. https://doi.org/10.1007/978-3-030-30796-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30796-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30795-0

  • Online ISBN: 978-3-030-30796-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics