Skip to main content

Ontology Completion Using Graph Convolutional Networks

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2019 (ISWC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11778))

Included in the following conference series:

Abstract

Many methods have been proposed to automatically extend knowledge bases, but the vast majority of these methods focus on finding plausible missing facts, and knowledge graph triples in particular. In this paper, we instead focus on automatically extending ontologies that are encoded as a set of existential rules. In particular, our aim is to find rules that are plausible, but which cannot be deduced from the given ontology. To this end, we propose a graph-based representation of rule bases. Nodes of the considered graphs correspond to predicates, and they are annotated with vectors encoding our prior knowledge about the meaning of these predicates. The vectors may be obtained from external resources such as word embeddings or they could be estimated from the rule base itself. Edges connect predicates that co-occur in the same rule and their annotations reflect the types of rules in which the predicates co-occur. We then use a neural network model based on Graph Convolutional Networks (GCNs) to refine the initial vector representation of the predicates, to obtain a representation which is predictive of which rules are plausible. We present experimental results that demonstrate the strong performance of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://wiki.opensemanticframework.org/index.php/Ontology_Best_Practices.

  2. 2.

    Implementation and data are available at https://github.com/bzdt/GCN-based-Ontology-Completion.git.

  3. 3.

    http://www.adampease.org/OP/.

  4. 4.

    https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine.

  5. 5.

    http://reliant.teknowledge.com/DAML/Economy.owl.

  6. 6.

    http://reliant.teknowledge.com/DAML/Transportation.owl.

  7. 7.

    http://swat.cse.lehigh.edu/resources/onto/olympics.owl.

  8. 8.

    https://code.google.com/archive/p/word2vec/.

  9. 9.

    https://github.com/stardog-union/pellet.

  10. 10.

    https://docs.dgl.ai.

References

  1. Alfarone, D., Davis, J.: Unsupervised learning of an IS-A taxonomy from a limited domain-specific corpus. In: Proceedings IJCAI, pp. 1434–1441 (2015)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  3. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Proceedings IJCAI, vol. 7, pp. 230–235 (2007)

    Google Scholar 

  4. Baget, J., Leclère, M., Mugnier, M., Salvat, E.: On rules with existential variables: walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011). https://doi.org/10.1016/j.artint.2011.03.002

    Article  MathSciNet  MATH  Google Scholar 

  5. Beltagy, I., Chau, C., Boleda, G., Garrette, D., Erk, K., Mooney, R.: Montague meets Markov: deep semantics with probabilistic logical form. In: Proceedings of *SEM13, pp. 11–21 (2013)

    Google Scholar 

  6. Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_5

    Chapter  Google Scholar 

  7. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  8. Bouraoui, Z., Jameel, S., Schockaert, S.: Inductive reasoning about ontologies using conceptual spaces. In: Proceedings AAAI, pp. 4364–4370 (2017)

    Google Scholar 

  9. Bouraoui, Z., Schockaert, S.: Automated rule base completion as Bayesian concept induction. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA, 27 January–1 February (2019)

    Google Scholar 

  10. Bühmann, L., Lehmann, J., Westphal, P.: Dl-learner–a framework for inductive learning on the semantic web. J. Web Semant. 39, 15–24 (2016)

    Article  Google Scholar 

  11. Camacho-Collados, J., Pilehvar, M.T., Navigli, R.: Nasari: integrating explicit knowledge and corpus statistics for a multilingual representation of concepts and entities. Artif. Intell. 240, 36–64 (2016)

    Article  MathSciNet  Google Scholar 

  12. Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Advances in Neural Information Processing Systems, pp. 2224–2232 (2015)

    Google Scholar 

  13. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1263–1272. JMLR. org (2017)

    Google Scholar 

  14. Grover, A., Zweig, A., Ermon, S.: Graphite: iterative generative modeling of graphs. arXiv preprint arXiv:1803.10459 (2018)

  15. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  16. Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y.: Knowledge transfer for out-of-knowledge-base entities: a graph neural network approach. arXiv preprint arXiv:1706.05674 (2017)

  17. Hill, F., Cho, K., Korhonen, A.: Learning distributed representations of sentences from unlabelled data. In: Proceedings NAACL-HLT, pp. 1367–1377 (2016)

    Google Scholar 

  18. Horrocks, I.: Ontologies and the semantic web. Commun. ACM 51(12), 58–67 (2008). https://doi.org/10.1145/1409360.1409377

    Article  Google Scholar 

  19. Jameel, S., Bouraoui, Z., Schockaert, S.: MEmbER: max-margin based embeddings for entity retrieval. In: Proceedings SIGIR, pp. 783–792 (2017)

    Google Scholar 

  20. Jameel, S., Schockaert, S.: Entity embeddings with conceptual subspaces as a basis for plausible reasoning. In: ECAI, pp. 1353–1361 (2016)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  23. Kok, S., Domingos, P.: Statistical predicate invention. In: Proceedings ICML, pp. 433–440 (2007)

    Google Scholar 

  24. Kozareva, Z., Hovy, E.: A semi-supervised method to learn and construct taxonomies using the web. In: Proceedings EMNLP, pp. 1110–1118 (2010)

    Google Scholar 

  25. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a large scale knowledge base. In: Proceedings EMNLP, pp. 529–539 (2011)

    Google Scholar 

  26. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 705–714 (2015)

    Google Scholar 

  27. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)

    Article  MathSciNet  Google Scholar 

  28. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 27th Annual Conference on Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  29. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings ACL, pp. 1003–1011 (2009)

    Google Scholar 

  30. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1), 49–73 (2015)

    Article  MathSciNet  Google Scholar 

  31. Neelakantan, A., Chang, M.: Inferring missing entity type instances for knowledge base completion: new dataset and methods. In: Proceedings NAACL, pp. 515–525 (2015)

    Google Scholar 

  32. Qian, W., Fu, C., Zhu, Y., Cai, D., He, X.: Translating embeddings for knowledge graph completion with relation attention mechanism. In: IJCAI, pp. 4286–4292 (2018)

    Google Scholar 

  33. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6323, pp. 148–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8_10

    Chapter  Google Scholar 

  34. Riedel, S., Yao, L., McCallum, A., Marlin, B.M.: Relation extraction with matrix factorization and universal schemas. In: Proceedings HLT-NAACL, pp. 74–84 (2013)

    Google Scholar 

  35. Rocktäschel, T., Riedel, S.: Learning knowledge base inference with neural theorem provers. In: Proceedings of the 5th Workshop on Automated Knowledge Base Construction, pp. 45–50 (2016)

    Google Scholar 

  36. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Proceedings NIPS, pp. 3791–3803 (2017)

    Google Scholar 

  37. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  38. Schockaert, S., Prade, H.: Interpolative and extrapolative reasoning in propositional theories using qualitative knowledge about conceptual spaces. Artif. Intell. 202, 86–131 (2013)

    Article  MathSciNet  Google Scholar 

  39. Šourek, G., Manandhar, S., Železný, F., Schockaert, S., Kuželka, O.: Learning predictive categories using lifted relational neural networks. In: Cussens, J., Russo, A. (eds.) ILP 2016. LNCS, vol. 10326, pp. 108–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63342-8_9

    Chapter  Google Scholar 

  40. Speer, R., Havasi, C., Lieberman, H.: AnalogySpace: reducing the dimensionality of common sense knowledge. In: Proceedings AAAI, pp. 548–553 (2008)

    Google Scholar 

  41. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: Proceedings of EMNLP-15, pp. 1499–1509 (2015)

    Google Scholar 

  42. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings ICML, pp. 2071–2080 (2016)

    Google Scholar 

  43. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., et al. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21034-1_9

    Chapter  Google Scholar 

  44. West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R., Lin, D.: Knowledge base completion via search-based question answering. In: Proceedings WWW, pp. 515–526 (2014)

    Google Scholar 

  45. Xiao, H., Huang, M., Meng, L., Zhu, X.: SSP: semantic space projection for knowledge graph embedding with text descriptions. In: Proceedings AAAI, vol. 17, pp. 3104–3110 (2017)

    Google Scholar 

  46. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: Proceedings of AAAI, pp. 2659–2665 (2016)

    Google Scholar 

  47. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of ICLR-15 (2015)

    Google Scholar 

  48. Zhong, H., Zhang, J., Wang, Z., Wan, H., Chen, Z.: Aligning knowledge and text embeddings by entity descriptions. In: EMNLP, pp. 267–272 (2015)

    Google Scholar 

Download references

Acknowledgements

Steven Schockaert was supported by ERC Starting Grant 637277. Zied Bouraoui was supported by CNRS PEPS INS2I MODERN.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Li , Zied Bouraoui or Steven Schockaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, N., Bouraoui, Z., Schockaert, S. (2019). Ontology Completion Using Graph Convolutional Networks. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30793-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30792-9

  • Online ISBN: 978-3-030-30793-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics