Skip to main content

HMM Based Approach

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

Approaches based on hidden Markov models (HMMs) have been devoted particular attention in the last years. AFAMAP (Additive Factorial Approximate Maximum a Posteriori) has been introduced in Kolter and Jaakkola to reduce the computational burden of FHMM. The algorithm bases its operation on additive and difference FHMM, and it constrains the posterior probability to require only one HMM change state at any given time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

References

  1. G.W. Hart, Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)

    Article  Google Scholar 

  2. H. Kim, M. Marwah, M.F. Arlitt, G. Lyon, J. Han, Unsupervised disaggregation of low frequency power measurements, in Proceedings of the 11th SIAM International Conference on Data Mining, Mesa (2011), pp. 747–758

    Google Scholar 

  3. O. Parson, S. Ghosh, M. Weal, A. Rogers, An unsupervised training method for non-intrusive appliance load monitoring. Artif. Intell. 217, 1–19 (2014)

    Article  Google Scholar 

  4. O. Parson, M. Weal, A. Rogers, A scalable non-intrusive load monitoring system for fridge-freezer energy efficiency estimation, in Proceedings of the 2nd International Workshop on Non-Intrusive Load Monitoring, Austin, Jun. 3 2014

    Google Scholar 

  5. A. Zoha, A. Gluhak, M. Nati, M.A. Imran, Low-power appliance monitoring using Factorial Hidden Markov Models, in Proceedings of the 8th International Conference on Intelligent Sensors, Sensor Networks and Information Processing: Sensing the Future (ISSNIP), Melbourne, vol. 1 (2013), pp. 527–532

    Google Scholar 

  6. J.Z. Kolter, T. Jaakkola, Approximate inference in additive factorial HMMs with application to energy disaggregation. J. Mach. Learn. Res. 22, 1472–1482 (2012)

    Google Scholar 

  7. I. Valera, F.J.R. Ruiz, F. Perez-Cruz, Infinite factorial unbounded-state hidden Markov model. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1816–1828 (2016)

    Article  Google Scholar 

  8. M. Zhong, N. Goddard, C. Sutton, Signal aggregate constraints in additive factorial HMMs with application to energy disaggregation, in Advances in Neural Information Processing Systems (2014), pp. 3590–3598

    Google Scholar 

  9. S. Makonin, F. Popowich, I.V. Bajić, B. Gill, L. Bartram, Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring. IEEE Trans. Smart Grid 7(6), 2575–2584 (2016)

    Article  Google Scholar 

  10. M.J. Johnson, A.S. Willsky, Bayesian nonparametric hidden semi-Markov models. J. Mach. Learn. Res. 14(1), 673–701 (2013)

    MathSciNet  MATH  Google Scholar 

  11. J. Kelly, W. Knottenbelt, Neural NILM: deep neural networks applied to energy disaggregation, in Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, BuildSys ’15 (ACM, New York, 2015), pp. 55–64

    Google Scholar 

  12. M. Figueiredo, A. De Almeida, B. Ribeiro, Home electrical signal disaggregation for non-intrusive load monitoring (NILM) systems. Neurocomputing 96, 66–73 (2012)

    Article  Google Scholar 

  13. L.K. Norford, S.B. Leeb, Non-intrusive electrical load monitoring in commercial buildings based on steady-state and transient load-detection algorithms. Energy Build. 24(1), 51–64 (1996)

    Article  Google Scholar 

  14. H.-H. Chang, P.W. Wiratha, N. Chen, A non-intrusive load monitoring system using an embedded system for applications to unbalanced residential distribution systems. Energy Procedia 61, 146–150 (2014)

    Article  Google Scholar 

  15. Y.F. Wong, Y.A. Sekercioglu, T. Drummond, V.S. Wong, Recent approaches to non-intrusive load monitoring techniques in residential settings, in Proceedings of the IEEE Symposium on Computational Intelligence Applications In Smart Grid (CIASG), Singapore, 16–19 Apr. 2013, pp. 73–79

    Google Scholar 

  16. R.S. Butner, D.J. Reid, M. Hoffman, G.P. Sullivan, J. Blanchard, Non-Intrusive Load Monitoring Assessment: Literature Review and Laboratory Protocol (Pacific Northwest National Laboratory, Richland, 2013)

    Google Scholar 

  17. C. Beckel, W. Kleiminger, R. Cicchetti, T. Staake, S. Santini, The ECO data set and the performance of non-intrusive load monitoring algorithms, in Proceedings of the 1st ACM International Conference on Embedded Systems for Energy-Efficient Buildings (BuildSys 2014), Memphis. November 2014 (ACM, New York, 2014), pp. 80–89

    Google Scholar 

  18. S. Makonin, F. Popowich, L. Bartram, B. Gill, I.V. Bajic, AMPds: a public dataset for load disaggregation and eco-feedback research, in Proceedings of the IEEE Electrical Power and Energy Conference (EPEC), Halifax (2013)

    Google Scholar 

  19. L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  20. Z. Ghahramani, M.I. Jordan, Factorial Hidden Markov models. Mach. Learn. 29(2–3), 245–273 (1997)

    Article  Google Scholar 

  21. S. Pattem, Unsupervised disaggregation for non-intrusive load monitoring, in 2012 11th International Conference on Machine Learning and Applications (ICMLA), vol. 2 (IEEE, Piscataway, 2012), pp. 515–520

    Google Scholar 

  22. O. Parson, S. Ghosh, M. Weal, A. Rogers, Non-intrusive load monitoring using prior models of general appliance types, in Twenty-Sixth Conference on Artificial Intelligence (AAAI-12) (2012)

    Google Scholar 

  23. S. Makonin, F. Popowich, Nonintrusive load monitoring (NILM) performance evaluation. Energy Effic. 8(4), 809–814 (2014)

    Article  Google Scholar 

  24. J.A. Hartigan, M.A. Wong, Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 28(1), 100–108 (1979)

    MATH  Google Scholar 

  25. D. Egarter, M. Pöchacker, W. Elmenreich, Complexity of power draws for load disaggregation, CoRR (2015)

    Google Scholar 

  26. A.I. Cole, A. Albicki, Algorithm for nonintrusive identification of residential appliances, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, 31 May - 3 Jun. 1998, pp. 338–341

    Google Scholar 

  27. H. Goncalves, A. Ocneanu, M. Berges, Unsupervised disaggregation of appliances using aggregated consumption data, in Proceedings of the 1st KDD Workshop on Data Mining Applications in Sustainability (SustKDD), San Diego (2011)

    Google Scholar 

  28. C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, P. Armstrong, Power signature analysis. IEEE Power Energy Mag. 1(2), 56–63 (2003)

    Article  Google Scholar 

  29. A. Marchiori, D. Hakkarinen, Q. Han, L. Earle, Circuit-level load monitoring for household energy management. IEEE Pervasive Comput. 10(1), 40–48 (2011)

    Article  Google Scholar 

  30. M. Weiss, A. Helfenstein, F. Mattern, T. Staake, Leveraging smart meter data to recognize home appliances, in Proceedings of IEEE International Conference on Pervasive Computing and Communications (PerCom), Lugano (2012), pp. 190–197

    Google Scholar 

  31. L.K. Norford, S.B. Leeb, Non-intrusive electrical load monitoring in commercial buildings based on steady-state and transient load-detection algorithms. Energy Build. 24(1), 51–64 (1996)

    Article  Google Scholar 

  32. M. Berges, E. Goldman, H.S. Matthews, L. Soibelman, K. Anderson, User-centered nonintrusive electricity load monitoring for residential buildings. J. Comput. Civ. Eng. 25(6), 471–480 (2011)

    Article  Google Scholar 

  33. H.-H. Chang, H.-T. Yang, Applying a non-intrusive energy-management system to economic dispatch for a cogeneration system and power utility. Appl. Energy 86(11), 2335–2343 (2009)

    Article  Google Scholar 

  34. H.-H. Chang, Non-intrusive demand monitoring and load identification for energy management systems based on transient feature analyses. Energies 5(11), 4569–4589 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonfigli, R., Squartini, S. (2020). HMM Based Approach. In: Machine Learning Approaches to Non-Intrusive Load Monitoring. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-30782-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30782-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30781-3

  • Online ISBN: 978-3-030-30782-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics