Skip to main content

Biofilm and Antimicrobial Resistance

  • Chapter
  • First Online:

Abstract

Biofilm-forming bacteria cause severe health problems in patients with implanted devices by attachment of cells to surface matrix. Antibiotics can act on planktonic bacteria more easily than biofilm bacteria. Biofilm bacteria have several mechanisms for combatting antibiotic action on them. Poor penetration of antibiotics, exopolysaccharide, eDNA in matrix degradation has a role in antibiotic resistance. Limited nutrient, slow growth, the response of adaptive stress and persister cell formation also cause multilevel protections for antibiotic resistance. Genetically horizontal gene transfer and higher mutation frequency also show a pivotal role in antimicrobial resistance in biofilm bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824

    Article  CAS  Google Scholar 

  • Billings N, Millan M, Caldara M et al (2013) The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 9:e1003526

    Article  CAS  Google Scholar 

  • Bjarnsholt T, Jensen PO, Burmolle M et al (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383

    Article  CAS  Google Scholar 

  • Bowler LL, Zhanel GG, Ball TB et al (2012) Mature Pseudomonas aeruginosa biofilms prevail compared to young biofilms in the presence of ceftazidime. Antimicrob Agents Chemother 56:4976–4979

    Google Scholar 

  • Chua SL, Yam JK, Hao P et al (2016) Selective labeling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nat Commun 7:10750

    Article  CAS  Google Scholar 

  • Clayton WH, Mah TF (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41:276–301

    Google Scholar 

  • Colvin KM, Gordon VD, Murakami K et al (2011) The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7:e1001264

    Article  CAS  Google Scholar 

  • Dale JL, Cagnazzo J, Phan CQ et al (2015) Multiple roles for Enterococcus faecalis glycosyltransferases in biofilm-associated antibiotic resistance, cell envelope integrity, and conjugative transfer. Antimicrob Agents Chemother 59:4094–4105

    Google Scholar 

  • Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J (2006) Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun 74(7):4164–4171

    Google Scholar 

  • Giwercman B, Jensen ET, Hoiby N et al (1991) Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm. Antimicrob Agents Chemother 35:1008–1010

    Google Scholar 

  • Gross M, Cramton SE, Gotz F, Peschel A (2001) Key role of teichoic acid net charge in staphylococcus aureus colonization of artificial surfaces. Infect Immun 69(5):3423–3426

    Google Scholar 

  • Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  Google Scholar 

  • Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49:2467–2473

    Google Scholar 

  • Johnson L, Mulcahy H, Kanevets U et al (2012) Surface localized spermidine protects the Pseudomonas aeruginosa outer membrane from antibiotic treatment and oxidative stress. J Bacteriol 194:813–826

    Article  CAS  Google Scholar 

  • Kolpen M, Appeldorff CF, Brandt S et al (2016) Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions. Pathog Dis 74:ftv086

    Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    Article  CAS  Google Scholar 

  • Liao J, Sauer K (2012) The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J Bacteriol 194(18):4823–4836

    Google Scholar 

  • Lynch SV, Dixon L, Benoit MR et al (2007) Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms. Antimicrob Agents Chemother 51:3650–3658

    Google Scholar 

  • Mandsberg LF, Ciofu O, Kirkby N et al (2009) Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 53:2483–2491

    Article  CAS  Google Scholar 

  • Nechaev S, Severinov K (2008) RapA: completing the transcription cycle? Structure 16:1294–1295

    Article  CAS  Google Scholar 

  • Nilsson M, Rybtke M, Givskov M et al (2016) The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms. Int J Antimicrob Agents 48:298–304

    Article  CAS  Google Scholar 

  • Paraje MG (2011) Antimicrobial resistance in biofilms. In: Méndez Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, pp 736–744

    Google Scholar 

  • Poole K (2011) Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65

    Article  CAS  Google Scholar 

  • Popat R, Crusz SA, Messina M et al (2012) Quorum-sensing and cheating in bacterial biofilms. Proc Biol Sci 279:4765–4771

    Article  CAS  Google Scholar 

  • Singh R, Ray P, Das A et al (2010) Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 65:1955–1958

    Article  CAS  Google Scholar 

  • Singh R, Sahore S, Kaur P et al (2016) Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain- and antibiotic-specific differences. Pathog Dis 74. https://doi.org/10.1093/femspd/ftw056

  • Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53–62

    Article  CAS  Google Scholar 

  • Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113

    Article  CAS  Google Scholar 

  • Stewart PS, Franklin MJ, Williamson KS et al (2015) Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 59:3838–3847

    Google Scholar 

  • Sukhodolets MV, Cabrera JE, Zhi H et al (2001) RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription. Gene Dev 15:3330–3341

    Article  CAS  Google Scholar 

  • Zhang L, Fritsch M, Hammond L, Landreville R, Slatculescu C, Colavita A, Mah TF, Hancock LE (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS ONE 8(4):e61625

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineeta Mittal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mittal, V. (2019). Biofilm and Antimicrobial Resistance. In: Kumar, S., Chandra, N., Singh, L., Hashmi, M., Varma, A. (eds) Biofilms in Human Diseases: Treatment and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-30757-8_18

Download citation

Publish with us

Policies and ethics