Skip to main content

Comparison Between Suitable Priors for Additive Bayesian Networks

  • Conference paper
  • First Online:
Bayesian Statistics and New Generations (BAYSM 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 296))

Included in the following conference series:

Abstract

Additive Bayesian networks (ABN) are types of graphical models that extend the usual Bayesian-generalised linear model to multiple dependent variables through the factorisation of the joint probability distribution of the underlying variables. When fitting an ABN model, the choice of the prior for the parameters is of crucial importance. If an inadequate prior—like a not sufficiently informative one—is used, data separation and data sparsity may lead to issues in the model selection process. In this work we present a simulation study to compare two weakly informative priors with a strongly informative one. For the weakly informative prior, we use a zero mean Gaussian prior with a large variance, currently implemented in the R package abn. The candidate prior belongs to the Student’s t-distribution. It is specifically designed for logistic regressions. Finally, the strongly informative prior is Gaussian with a mean equal to the true parameter value and a small variance. We compare the impact of these priors on the accuracy of the learned additive Bayesian network as function of different parameters. We create a simulation study to illustrate Lindley’s paradox based on the prior choice. We then conclude by highlighting the good performance of the informative Student’s t-prior and the limited impact of Lindley’s paradox. Finally, suggestions for further developments are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, M., Ibrahim, J.G.: Conjugate priors for generalized linear models. Statistica Sinica 13, 461–476 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Diaconis, P., Ylvisaker, D.: Conjugate priors for exponential families. Ann. Stat. 7(2), 269–281 (1979)

    Article  MathSciNet  Google Scholar 

  3. Djebbari, A., Quackenbush, J.: Seeded Bayesian networks: constructing genetic networks from microarray data. BMC Syst. Biol. 2(1), 57 (2008)

    Article  Google Scholar 

  4. Dojer, N., Gambin, A., Mizera, A., Wilczyński, B., Tiuryn, J.: Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinform. 7(1), 249 (2006)

    Article  Google Scholar 

  5. Firth, D.: Bias reduction of maximum likelihood estimates. Biometrika 80(1), 27–38 (1993)

    Article  MathSciNet  Google Scholar 

  6. Flesch, I., Lucas, P.J.: Markov equivalence in Bayesian networks. In: Lucas, P., Gámez, J.A., Salmerón, A. (eds.) Advances in Probabilistic Graphical Models, pp. 3–38. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  7. Gelman, A., Stern, H.S., Carlin, J.B., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall/CRC (2013)

    Google Scholar 

  8. Gelman, A., Jakulin, A., Pittau, M.G., Su, Y.S.: A weakly informative default prior distribution for logistic and other regression models. Ann. Appl. Stat. 2(4), 1360–1383 (2008)

    Article  MathSciNet  Google Scholar 

  9. Gutiérrez-Peña, E., Smith, A.F.M.: Conjugate parameterizations for natural exponential families. J. Am. Stat. Assoc. 90(432), 1347–1356 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Hartnack, S., Springer, S., Pittavino, M., Grimm, H.: Attitudes of Austrian veterinarians towards euthanasia in small animal practice: impacts of age and gender on views on euthanasia. BMC Vet. Res. 12(1), 26 (2016)

    Article  Google Scholar 

  11. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

    MATH  Google Scholar 

  12. Hodges, A.P., Dai, D., Xiang, Z., Woolf, P., Xi, C., He, Y.: Bayesian network expansion identifies new ROS and biofilm regulators. PLOS One 5(3), e9513 (2010)

    Article  Google Scholar 

  13. Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung, S., Emili, A., Snyder, M., Greenblatt, J.F., Gerstein, M.: A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302(5644), 449–453 (2003)

    Article  Google Scholar 

  14. Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 5(May), 549–573 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Kratzer, G., Pittavino, M., Ian, L.F., Lewis, I.F.: abn: an R package for modelling multivariate data using additive Bayesian networks, R package version 1.3 (2018). https://CRAN.R-project.org/package=abn

  16. Kratzer G, Furrer R (2018) Information-Theoretic Scoring Rules to Learn Additive Bayesian Network Applied to Epidemiology. arXiv:1808.01126

  17. Lewis, F.I.: Bayesian networks as a tool for epidemiological systems analysis. In: AIP Conference Proceedings vol. 1493, pp. 610–617 (2012)

    Google Scholar 

  18. Lewis, F.I., Brülisauer, F., Gunn, G.J.: Structure discovery in Bayesian networks: an analytical tool for analysing complex animal health data. Prev. Vet. Med. 100(2), 109–115 (2011)

    Article  Google Scholar 

  19. Lewis, F.I., McCormick, B.J.: Revealing the complexity of health determinants in resource-poor settings. Am. J. Epidemiol. 176(11), 1051–1059 (2012)

    Article  Google Scholar 

  20. Lewis, F.I., Ward, M.P.: Improving epidemiologic data analyses through multivariate regression modelling. Emerg. Themes Epidemiol. 10(1), 4 (2013)

    Article  Google Scholar 

  21. Lindley, D.V.: A statistical paradox. Biometrika 44(1/2), 187–192 (1957)

    Article  Google Scholar 

  22. Pitman, E.J.G.: Sufficient statistics and intrinsic accuracy. Math. Proc. Camb. Philos. Soc. 32(4), 567–579 (1936)

    Article  Google Scholar 

  23. Pittavino, M.: Additive Bayesian networks for multivariate data: parameter learning, model fitting and applications in veterinary epidemiology. Ph.D. thesis, University of Zurich (2016)

    Google Scholar 

  24. Pittavino, M., Dreyfus, A., Heuer, C., Benschop, J., Wilson, P., Collins-Emerson, J., Torgerson, P.R., Furrer, R.: Comparison between generalized linear modelling and additive Bayesian network; identification of factors associated with the incidence of antibodies against Leptospira interrogans sv Pomona in meat workers in New Zealand. Acta Trop. 173, 191–199 (2017)

    Article  Google Scholar 

  25. Poon, A.F.Y., Lewis, F.I., Pond, S.L.K., Frost, S.D.W.: Evolutionary interactions between N-linked glycosylation sites in the HIV-1 envelope. PLOS Comput. Biol. 3(1), e11 (2007)

    Article  Google Scholar 

  26. R Core Team: R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017)

    Google Scholar 

  27. Robinson, R.W.: Counting unlabeled acyclic digraphs. In: Little, C.H.C. (ed.) Combinatorial Mathematics V, pp. 28–43. Springer, Berlin, Heidelberg (1977)

    Chapter  Google Scholar 

  28. Sanchez-Vazquez, M.J., Nielen, M., Edwards, S.A., Gunn, G.J., Lewis, F.I.: Identifying associations between pig pathologies using a multi-dimensional machine learning methodology. BMC Vet. Res. 8(1), 151 (2012)

    Article  Google Scholar 

  29. Ward, M.P., Lewis, F.I.: Bayesian graphical modelling: applications in veterinary epidemiology. Prev. Vet. Med. 110(1), 1–3 (2013)

    Article  Google Scholar 

  30. Zorn, C.: A solution to separation in binary response models. Polit. Anal. 13(2), 157–170 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Kratzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kratzer, G., Furrer, R., Pittavino, M. (2019). Comparison Between Suitable Priors for Additive Bayesian Networks. In: Argiento, R., Durante, D., Wade, S. (eds) Bayesian Statistics and New Generations. BAYSM 2018. Springer Proceedings in Mathematics & Statistics, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-30611-3_10

Download citation

Publish with us

Policies and ethics