Skip to main content

Bethe-Sommerfeld Conjecture in Semiclassical Settings

  • Chapter
  • First Online:
Book cover Microlocal Analysis, Sharp Spectral Asymptotics and Applications V
  • 371 Accesses

Abstract

Under certain assumptions (including \(d\ge 2)\) we prove that the spectrum of a scalar operator in \(\mathscr {L}^2({\mathbb {R}}^d)\)

$$\begin{aligned} A_\varepsilon (x, hD)= A^0(hD) + \varepsilon B(x, hD), \end{aligned}$$

covers interval \((\tau -\epsilon ,\tau +\epsilon )\), where \(A^0\) is an elliptic operator and B(xhD) is a periodic perturbation, \(\varepsilon =O(h^\varkappa )\), \(\varkappa >0\).

Further, we consider generalizations.

This research was supported in part by National Science and Engineering Research Council (Canada) Discovery Grant RGPIN 13827.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. V. Guillemin, Some classical theorems in spectral theory revised, Seminar on Singularities of solutions of partial differential equations, Princeton University Press, NJ, 219–259 (1979).

    Google Scholar 

  2. G. Barbatis, L. Parnovski. Bethe - Sommerfeld conjecture for pseudo-differential perturbation, Comm.P.D.E. 34(4):383 - 418, (2009).

    Google Scholar 

  3. A. Sommerfeld, H. Bethe, Elektronentheorie der Metalle, in H. Geiger and K. Scheel, eds., Handbuch der Physik, Volume 24, Part 2, 333-622 (Springer, 1933). Later edition: Elektronentheorie der Metalle, Springer, 1967.

    Google Scholar 

  4. J.W.S. Cassels, An introduction to the geometry of numbers, Springer-Verlag, Berlin, 1959.

    Google Scholar 

  5. B.E.J. Dahlberg, E. Trubowitz, A remark on two dimensional periodic potentials, Comment. Math. Helvetici 57:130–134 (1982).

    Article  MathSciNet  Google Scholar 

  6. M.S.P. Eastham, The spectral theory of periodic differential equations, Scottish Academice Press, 1973.

    Google Scholar 

  7. J. Feldman, H. Knörrer, E. Trubowitz, The perturbatively stable spectrum of a periodic Schrödinger operator, Invent. Math., 100:259–300 (1990).

    Google Scholar 

  8. J. Feldman, H. Knörrer, E. Trubowitz, Perturbatively unstable eigenvalues of a periodic Schrödinger operator, Comment. Math. Helvetici, 66:557–579 (1991).

    Article  MathSciNet  Google Scholar 

  9. V. Ivrii, Microlocal Analysis, Sharp Spectral, Asymptotics and Applications.

    Google Scholar 

  10. V. Ivrii. 100 years of Weyl’s law,Bull. Math. Sci., 6(3):379–452 (2016).

    Article  MathSciNet  Google Scholar 

  11. V. Ivrii. Complete semiclassical spectral asymptotics for periodic and almost periodic perturbations of constant operators, arXiv:1808.01619 (2018).

  12. Y. E. Karpeshina, Perturbation theory for the Schrödinger operator with a periodic potential, Lecture Notes in Math. 1663, Springer Berlin 1997.

    Book  Google Scholar 

  13. Y. E. Karpeshina, Spectral properties of periodic magnetic Schrödinger operator in the high-energy region. Two-dimensional case, Comm. Math. Phys., 251(3):473–514 (2004).

    Google Scholar 

  14. T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  15. P. Kuchment, Floquet theory for partial differential equations, Birkhäuser, Basel, 1993.

    Google Scholar 

  16. S. Morozov, L. Parnovski, R. Shterenberg. Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic pseudo-differential operators, Ann. Henri Poincar 15(2):263–312 (2014).

    Article  MathSciNet  Google Scholar 

  17. L. Parnovski, Bethe-Sommerfeld conjecture, Annales H. Poincaré, 9(3):457–508 (2008).

    Article  MathSciNet  Google Scholar 

  18. L. Parnovski, R. Shterenberg. Asymptotic expansion of the integrated density of states of a two-dimensional periodic Schroedinger operator, Invent. Math., 176(2):275–323 (2009).

    Article  Google Scholar 

  19. L. Parnovski, R. Shterenberg. Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic Schrödinger operators, Ann. of Math., Second Series, 176(2):1039–1096 (2012).

    Article  MathSciNet  Google Scholar 

  20. L. Parnovski, R. Shterenberg. Complete asymptotic expansion of the spectral function of multidimensional almost-periodic Schrödinger operators, Duke Math. J., 165(3):509–561 (2016).

    Article  MathSciNet  Google Scholar 

  21. L. Parnovski, A. V. Sobolev, Bethe-Sommerfeld conjecture for polyharmonic operators, Duke Math. J., 107(2):209–238 (2001).

    Article  MathSciNet  Google Scholar 

  22. L. Parnovski, A. V. Sobolev, Perturbation theory and the Bethe-Sommerfeld conjecture, Annales H. Poincaré, 2:573–581 (2001).

    Google Scholar 

  23. L. Parnovski, A. V. Sobolev. Bethe-Sommerfeld conjecture for periodic operators with strong perturbations, Invent. Math., 181:467–540 (2010).

    Article  MathSciNet  Google Scholar 

  24. V.N. Popov, M. Skriganov, A remark on the spectral structure of the two dimensional Schrödinger operator with a periodic potential, Zap. Nauchn. Sem. LOMI AN SSSR, 109:131–133 (1981) (Russian).

    Google Scholar 

  25. M. Reed M., B. Simon, Methods of Modern Mathematical Physics, IV, Academic Press, New York, 1975.

    Google Scholar 

  26. G. V. Rozenbljum, Near-similarity of operators and the spectral asymptotic behavior of pseudodifferential operators on the circle, Trudy Moskov. Mat. Obshch. 36:59–84 (1978) (Russian).

    Google Scholar 

  27. M. Skriganov, Proof of the Bethe-Sommerfeld conjecture in dimension two, Soviet Math. Dokl. 20(1):89–90 1979).

    Google Scholar 

  28. M. Skriganov, Geometrical and arithmetical methods in the spectral theory of the multi-dimensional periodic operators, Proc. Steklov Math. Inst. Vol. 171, 1984.

    Google Scholar 

  29. M. Skriganov, The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Inv. Math. 80:107–121 (1985).

    Google Scholar 

  30. M. Skriganov, A. Sobolev, Asymptotic estimates for spectral bands of periodic Schrödinger operators, St Petersburg Math. J. 17(1):207–216 (2006).

    Google Scholar 

  31. M. Skriganov, A. Sobolev, Variation of the number of lattice points in large balls, Acta Arith. 120(3): 245–267 (2005).

    Article  MathSciNet  Google Scholar 

  32. A. V. Sobolev. Integrated density of states for the periodic Schrödinger operator in dimension two, Ann. Henri Poincaré. 6:31–84 (2005) .

    Google Scholar 

  33. A. V. Sobolev. Asymptotics of the integrated density of states for periodic elliptic pseudo-differential operators in dimension one, Rev. Mat. Iberoam. 22(1):55–92 (2006).

    Google Scholar 

  34. A.V.Sobolev, Recent results on the Bethe-Sommerfeld conjecture, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, ix–xii, Proc. Sympos. Pure Math., 76, Part 1, Amer. Math. Soc., Providence, RI, 2007.

    Google Scholar 

  35. O.A. Veliev, Asymptotic formulas for the eigenvalues of the periodic Schrödinger operator and the Bethe-Sommerfeld conjecture, Functional Anal. Appl. 21(2):87–100 (1987).

    Google Scholar 

  36. O.A. Veliev, Perturbation theory for the periodic multidimensional Schrödinger operator and the Bethe-Sommerfeld Conjecture, Int. J. Contemp. Math. Sci., 2(2):19–87 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Ivrii .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ivrii, V. (2019). Bethe-Sommerfeld Conjecture in Semiclassical Settings. In: Microlocal Analysis, Sharp Spectral Asymptotics and Applications V. Springer, Cham. https://doi.org/10.1007/978-3-030-30561-1_36

Download citation

Publish with us

Policies and ethics