Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 224 Accesses

Abstract

The first hydrodynamic theory of the origin of thesolar wind was published by Parker [12]. He remarked that a strong difference in thermal pressure between the high atmosphere (corona) and interstellar plasma could lead to a global supersonic wind at a few solar radii. Parker’s theory required a source of internal (thermal) energy which had to be transported from surface to the high corona and at larger distances. Direct in situ spacecraft observations then confirmed the existence of the supersonic solar wind which cools with distance more slowly than predicted by the fluid equations. In this chapter we will give an overview of solar wind properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruno R, Carbone V (2005) The solar wind as a turbulence laboratory. Living Rev Sol Phys 2(1):4

    Google Scholar 

  2. Fox NJ, Velli M, Bale S, Decker R, Driesman A, Howard R, Kasper JC, Kinnison J, Kusterer M, Lario D, Lockwood MK, McComas DJ, Raouafi NE, Szabo A (2016) The solar probe plus mission: humanity’s first visit to our star. Space Sci Rev 1–42. https://doi.org/10.1007/s11214-015-0211-6

  3. Habbal S, Morgan H, Johnson J, Arndt MB, Daw A, Jaeggli S, Kuhn J, Mickey D (2007) Localized enhancements of Fe+ 10 density in the corona as observed in Fe xi789.2 nm during the 2006 March 29 total solar eclipse. Astrophys J 663(1):598–609. https://doi.org/10.1086/518403

  4. Hundhausen AJ (1968) Direct observations of solar-wind particles. Space Sci Rev 8:690–749. https://doi.org/10.1007/BF00175116

  5. Lemaire J, Pierrard V (2001) Kinetic models of solar and polar winds. Ap&SS 277:169–180. https://doi.org/10.1023/A:1012245909542

  6. Maksimovic M (1995) Etude d’un modele cinetique du vent solaire et spectroscopie du bruit thermique sur ulysses. PhD thesis, University of Paris VII

    Google Scholar 

  7. Maksimovic M, Zouganelis I, Chaufray JY, Issautier K, Scime EE, Littleton JE, Marsch E, McComas DJ, Salem C, Lin RP, Elliott H (2005) Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J Geophys Res 110(A9):237–9

    Google Scholar 

  8. Marsch E (2010) Helios: evolution of distribution functions 0.3–1 AU. Space Sci Rev 172(1-4):23–39. https://doi.org/10.1007/s11214-010-9734-z

  9. Marsch E, Rosenbauer H, Schwenn R, Muehlhaeuser KH, Neubauer FM (1982) Solar wind helium ions–observations of the HELIOS solar probes between 0.3 and 1 AU. J Geophys Res 87:35–51. https://doi.org/10.1029/JA087iA01p00035

  10. Maruca BA, Bale SD, Sorriso-Valvo L, Kasper JC, Stevens ML (2013) Collisional thermalization of hydrogen and helium in solar-wind plasma. Phys Rev Lett 111(24):241101. https://doi.org/10.1103/PhysRevLett.111.241101

  11. McComas DJ, Ebert RW, Elliott HA, Goldstein BE, Gosling JT, Schwadron NA, Skoug RM (2008) Weaker solar wind from the polar coronal holes and the whole Sun. Geophys Res Lett 35(18):1007–5. https://doi.org/10.1029/2008GL034896

  12. Parker EN (1958) Dynamics of the interplanetary gas and magnetic fields. Astrophy J 128:664

    Article  ADS  Google Scholar 

  13. Pierrard V (2012) Solar wind electron transport: interplanetary electric field and heat conduction. Space Sci Rev 172:315–324. https://doi.org/10.1007/s11214-011-9743-6

  14. Pierrard V, Lazar M, Schlickeiser R (2011) Evolution of the electron distribution function in the whistler wave turbulence of the solar wind. Sol Phys 269:421–438. https://doi.org/10.1007/s11207-010-9700-7

  15. Pierrard V, Voitenko Y (2013) Modification of proton velocity distributions by Alfvénic turbulence in the solar wind. Sol Phys 288:355–368. https://doi.org/10.1007/s11207-013-0294-8

  16. Scott SL, Coles WA, Bourgois G (1983) Solar wind observations near the sun using interplanetary scintillation. Astron Astrophys 123:207–215

    ADS  Google Scholar 

  17. Totten TL, Freeman JW, Arya S (1995) An empirical determination of the polytropic index for the free-streaming solar wind using Helios 1 data. J Geophys Res 100(A1):13–17

    Google Scholar 

  18. Vocks C (2012) Kinetic models for whistler wave scattering of electrons in the solar corona and wind. Space Sci Rev 172:303–314. https://doi.org/10.1007/s11214-011-9749-0

  19. Vocks C, Salem C, Lin RP, Mann G (2005) Electron halo and strahl formation in the solar wind by resonant interaction with whistler waves. Astrophys J 627:540–549. https://doi.org/10.1086/430119

  20. Wang YM, Muglach K (2008) Observations of low-latitude coronal plumes. Sol Phys 249(1):17–35. https://doi.org/10.1007/s11207-008-9171-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Montagud-Camps .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montagud-Camps, V. (2019). Solar Wind. In: Turbulent Heating and Anisotropy in the Solar Wind. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-30383-9_1

Download citation

Publish with us

Policies and ethics