Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 93))

  • 1765 Accesses

Abstract

Up until now, we have considered only the direct and inverse obstacle scattering problem for time-harmonic acoustic waves. In the following two chapters, we want to extend these results to obstacle scattering for time-harmonic electromagnetic waves. As in our analysis on acoustic scattering, we begin with an outline of the solution of the direct problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angell, T.S., Colton, D., and Kress, R.: Far field patterns and inverse scattering problems for imperfectly conducting obstacles. Math. Proc. Camb. Phil. Soc. 106, 553–569 (1989).

    Article  MathSciNet  Google Scholar 

  2. Angell, T.S., and Kirsch, A.: The conductive boundary condition for Maxwell’s equations. SIAM J. Appl. Math. 52, 1597–1610 (1992).

    Article  MathSciNet  Google Scholar 

  3. Blöhbaum, J.: Optimisation methods for an inverse problem with time-harmonic electromagnetic waves: an inverse problem in electromagnetic scattering. Inverse Problems 5, 463–482 (1989).

    Article  MathSciNet  Google Scholar 

  4. Calderón, A.P.: The multipole expansions of radiation fields. J. Rat. Mech. Anal. 3, 523–537 (1954).

    MathSciNet  MATH  Google Scholar 

  5. Colton, D., and Kirsch, A.: The use of polarization effects in electromagnetic inverse scattering problems. Math. Meth. in the Appl. Sci. 15, 1–10 (1992).

    Article  MathSciNet  Google Scholar 

  6. Colton, D., and Kress, R.: Dense sets and far field patterns in electromagnetic wave propagation. SIAM J. Math. Anal. 16, 1049–1060 (1985).

    Article  MathSciNet  Google Scholar 

  7. Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.

    Book  Google Scholar 

  8. Ganesh, M., and Hawkins, S. C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006).

    Article  MathSciNet  Google Scholar 

  9. Ganesh, M., and Hawkins, S. C.: An efficient surface integral equation method for the time-harmonic Maxwell equations. ANZIAM J. 48, C17–C33 (2007).

    Article  MathSciNet  Google Scholar 

  10. Ganesh, M., and Hawkins, S. C.: A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces. J. Comput. Phys. 227, 4543–4562 (2008).

    Article  MathSciNet  Google Scholar 

  11. Hähner, P.: An exterior boundary-value problem for the Maxwell equations with boundary data in a Sobolev space. Proc. Roy. Soc. Edinburgh 109A, 213–224 (1988).

    Article  MathSciNet  Google Scholar 

  12. Hähner, P.: Eindeutigkeits- und Regularitätssätze für Randwertprobleme bei der skalaren und vektoriellen Helmholtzgleichung. Dissertation, Göttingen 1990.

    Google Scholar 

  13. Jones, D.S.: Methods in Electromagnetic Wave Propagation. Clarendon Press, Oxford 1979.

    Google Scholar 

  14. Jones, D.S.: Acoustic and Electromagnetic Waves. Clarendon Press, Oxford 1986.

    Google Scholar 

  15. Kirsch, A.: Surface gradients and continuity properties for some integral operators in classical scattering theory. Math. Meth. in the Appl. Sci. 11, 789–804 (1989).

    Article  MathSciNet  Google Scholar 

  16. Knauff, W., and Kress, R.: On the exterior boundary value problem for the time-harmonic Maxwell equations. J. Math. Anal. Appl. 72, 215–235 (1979).

    Article  MathSciNet  Google Scholar 

  17. Kress, R.: On the boundary operator in electromagnetic scattering. Proc. Royal Soc. Edinburgh 103A, 91–98 (1986).

    Article  MathSciNet  Google Scholar 

  18. Le Louër, F.: Spectrally accurate numerical solution of hypersingular boundary integral equations for three-dimensional electromagnetic wave scattering problems. J. Comput. Phys. 275, 662–666 (2014).

    Article  MathSciNet  Google Scholar 

  19. Le Louër, F.: A spectrally accurate method for the direct and inverse scattering problems by multiple 3D dielectric obstacles. ANZIAM 59, E1–E49 (2018).

    Article  Google Scholar 

  20. Martensen, E.: Potentialtheorie. Teubner-Verlag, Stuttgart 1968.

    MATH  Google Scholar 

  21. Mautz, J.R., and Harrington, R.F.: A combined-source solution for radiating and scattering from a perfectly conducting body. IEEE Trans. Ant. and Prop. AP-27, 445–454 (1979).

    Article  Google Scholar 

  22. Monk, P.: Finite Element Methods for Maxwell’s Equations. Clarendon Press, Oxford, 2003.

    Book  Google Scholar 

  23. Müller, C.: Zur mathematischen Theorie elektromagnetischer Schwingungen. Abh. deutsch. Akad. Wiss. Berlin 3, 5–56 (1945/46).

    Google Scholar 

  24. Müller, C.: Randwertprobleme der Theorie elektromagnetischer Schwingungen. Math. Z. 56, 261–270 (1952).

    Article  MathSciNet  Google Scholar 

  25. Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin 1969.

    Book  Google Scholar 

  26. Nédélec, J.C.; Acoustic and Electromagnetic Equations. Springer, Berlin 2001.

    Book  Google Scholar 

  27. Pieper, M.: Spektralrandintegralmethoden zur Maxwell-Gleichung. Dissertation, Göttingen 2007.

    Google Scholar 

  28. Pieper, M.: Vector hyperinterpolation on the sphere. J. Approx. Theory 156, 173–186 (2009).

    Article  MathSciNet  Google Scholar 

  29. Ringrose, J.R.: Compact Non–Self Adjoint Operators. Van Nostrand Reinhold, London 1971.

    MATH  Google Scholar 

  30. Silver, S.: Microwave Antenna Theory and Design. M.I.T. Radiation Laboratory Series Vol. 12, McGraw-Hill, New York 1949.

    Google Scholar 

  31. Stratton, J.A., and Chu, L.J.: Diffraction theory of electromagnetic waves. Phys. Rev. 56, 99–107 (1939).

    Article  Google Scholar 

  32. van Bladel, J.: Electromagnetic Fields. Hemisphere Publishing Company, Washington 1985.

    Google Scholar 

  33. Weyl, H.: Kapazität von Strahlungsfeldern. Math. Z. 55, 187–198 (1952).

    Google Scholar 

  34. Wilcox, C.H.: An expansion theorem for electromagnetic fields. Comm. Pure Appl. Math. 9, 115–134 (1956).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colton, D., Kress, R. (2019). The Maxwell Equations. In: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-30351-8_6

Download citation

Publish with us

Policies and ethics