Skip to main content

Miniaturized Surface Plasmon Resonance Based Sensor Systems—Opportunities and Challenges

  • Chapter
  • First Online:
  • 714 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 223))

Abstract

Surface Plasmon Resonance (SPR) is a well-known and established technology in bioanalysis and pharmaceutical sciences. Due to the expensive instrumentation and the need of trained people, it is mainly limited to applications in laboratories. However, there are some areas like environmental monitoring, chemical processing and civil infrastructure, which urgently need new sensor technologies. SPR has the potential to serve these fields. In order to be qualified for a use in these areas SPR has to overcome some hurdles. The instrumentation has to be robust, small in size and cheap. A device, which fits these needs, will be a micro-opto-electro-mechanical system (MOEMS) with integrated intelligent algorithms. In this book chapter, examples of miniaturized SPR devices are introduced, the limitations which have to be overcome as well as the possibilities for future applications are proposed. Due to the manifold advantages of this technology and the dropping prices for imaging sensors, Surface Plasmon Resonance imaging (SPRi) might become one of the leading technologies for SPR smart sensor systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.F. Masson, Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2(1), 16–30 (2017)

    Article  Google Scholar 

  2. P. Singh, SPR biosensors: historical perspectives and current challenges. Sens. Actuators B: Chem. 229, 110–130 (2016)

    Article  Google Scholar 

  3. A. Olaru, C. Bala, N. Jaffrezic-Renault, H.Y. Aboul-Enein, Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit. Rev. Anal. Chem. 45(2), 97–105 (2015)

    Article  Google Scholar 

  4. C. Liu, F. Hu, W. Yang, J. Xu, Y. Chen, A critical review of advances in surface plasmon resonance imaging sensitivity. TrAC Trends Anal. Chem. (2017)

    Google Scholar 

  5. R.B. Schasfoort (ed.), Handbook of Surface Plasmon Resonance. Royal Society of Chemistry (2017)

    Google Scholar 

  6. S.G. Nelson, K.S. Johnston, S.S. Yee, High sensitivity surface plasmon resonance sensor based on phase detection. Sens. Actuators B: Chem. 35(1–3), 187–191 (1996)

    Article  Google Scholar 

  7. G.A. Lopez, M.C. Estevez, M. Soler, L.M. Lechuga, Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration. Nanophotonics 6(1), 123–136 (2017)

    Article  Google Scholar 

  8. M. Puiu, C. Bala, SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors 16(6), 870 (2016)

    Article  Google Scholar 

  9. D. Boecker, A. Zybin, K. Niemax, C. Grunwald, V.M. Mirsky, Noise reduction by multiple referencing in surface plasmon resonance imaging. Rev. Sci. Instrum. 79(2), 023110 (2008)

    Article  ADS  Google Scholar 

  10. V. Scherbahn, S. Nizamov, V.M. Mirsky, Toward ultrasensitive surface plasmon resonance sensors (2018)

    Google Scholar 

  11. P. Hausler, C. Genslein, C. Roth, T. Vitzthumecker, T. Hirsch, R. Bierl, Miniaturized surface plasmon resonance based sensor system, in Proceedings of the 6th International Conference on Photonics, Optics and Laser Technology - Volume 1, Photoptics (2018)

    Google Scholar 

  12. C. Rodriguez-Emmenegger, E. Brynda, T. Riedel, M. Houska, V. Šubr, A.B. Alles, E. Hasan, J.E. Gautrot, W.T. Huck, Polymer Brushes Showing Non-Fouling in Blood Plasma Challenge the Currently Accepted Design of Protein Resistant Surfaces. Macromol. Rapid Commun. 32(13), 952–957 (2011)

    Article  Google Scholar 

  13. H. Lísalová, E. Brynda, M. Houska, I. Visova, K. Mrkvova, X.C. Song, E. Gedeonova, F. Surman, T. Riedel, O. Pop-Georgievski, J. Homola, Ultralow-fouling behavior of biorecognition coatings based on carboxy-functional brushes of zwitterionic homo-and copolymers in blood plasma: functionalization matters. Anal. Chem. 89(6), 3524–3531 (2017)

    Google Scholar 

  14. J.W. Tomm, A. Jaeger, A. Bärwolff, T. Elsaesser, A. Gerhardt, J. Donecker, Aging properties of high power laser diode arrays analyzed by Fourier-transform photocurrent measurements. Appl. Phys. Lett. 71(16), 2233–2235 (1997)

    Article  ADS  Google Scholar 

  15. J.H. Grassi, R.M. Georgiadis, Temperature-dependent refractive index determination from critical angle measurements: Implications for quantitative SPR sensing. Anal. Chem. 71(19), 4392–4396 (1999)

    Article  Google Scholar 

  16. A.N. Naimushin, S.D. Soelberg, D.U. Bartholomew, J.L. Elkind, C.E. Furlong, A portable surface plasmon resonance (SPR) sensor system with temperature regulation. Sens. Actuators B: Chem. 96(1–2), 253–260 (2003)

    Article  Google Scholar 

  17. O. Telezhnikova, J. Homola, New approach to spectroscopy of surface plasmons. Opt. Lett. 31(22), 3339–3341 (2006)

    Article  ADS  Google Scholar 

  18. H. Šípová, M. Piliarik, M. Vala, K. Chadt, P. Adam, M. Bocková, K. Hegnerová, J. Homola, Portable surface plasmon resonance biosensor for detection of nucleic acids. Procedia Eng. 25, 148–151 (2011)

    Article  Google Scholar 

  19. T. Brulé, G. Granger, N. Bukar, C. Deschênes-Rancourt, T. Havard, A.R. Schmitzer, R. Martel, J.F. Masson, A field-deployed surface plasmon resonance (SPR) sensor for RDX quantification in environmental waters. Analyst 142(12), 2161–2168 (2017)

    Article  ADS  Google Scholar 

  20. B.N. Feltis, B.A. Sexton, F.L. Glenn, M.J. Best, M. Wilkins, T.J. Davis, A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens. Bioelectron. 23(7), 1131–1136 (2008)

    Article  Google Scholar 

  21. K. Bremer, B. Roth, Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt. Express 23(13), 17179–17184 (2015)

    Article  ADS  Google Scholar 

  22. Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, W. Peng, Surface plasmon resonance biosensor based on smart phone platforms. Sci. Rep. 5, 12864 (2015)

    Article  ADS  Google Scholar 

  23. H. Guner, E. Ozgur, G. Kokturk, M. Celik, E. Esen, A.E. Topal, S. Ayas, Y. Uludag, C. Elbuken, A. Dana, A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuators B: Chem. 239, 571–577 (2017)

    Article  Google Scholar 

  24. J. Homola, I. Koudela, S.S. Yee, Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens. Actuators B: Chem. 54(1–2), 16–24 (1999)

    Article  Google Scholar 

  25. J. Montague, Seriously? No kidding. Raspberry Pi, Arduino and other computers on open-source silicon boards are on the way for do-it-yourself monitoring—and even control. Control 30(9), 34–40 (2017)

    Google Scholar 

  26. M. Li, Ranking Popular Deep Learning Libraries for Data Science (2017). https://blog.thedataincubator.com/2017/10/ranking-popular-deep-learning-libraries-for-data-science

  27. M. Piliarik, J. Homola, Surface plasmon resonance (SPR) sensors: approaching their limits? Opt. Express 17(19), 16505–16517 (2009)

    Article  ADS  Google Scholar 

  28. European Machine Vision Association, EMVA standard 1288, standard for characterization of image sensors and cameras. Release 3, 1 (2016)

    Google Scholar 

  29. H. Naumann, G. Schröder, M. Löffler-Mang, Handbuch Bauelemente der Optik: Grundlagen, Werkstoffe, Geräte (Carl Hanser Verlag GmbH Co KG, Messtechnik, 2014)

    Book  Google Scholar 

  30. F. Pedrotti, L. Pedrotti, W. Bausch, H. Schmidt, Optik für Ingenieure (Springer, Berlin Heidelberg, 2002)

    Book  Google Scholar 

  31. C.M. Keck, R.H. Müller, Size analysis of submicron particles by laser diffractometry—90% of the published measurements are false. Int. J. Pharm. 355(1–2), 150–163 (2008)

    Article  Google Scholar 

  32. M.J. Weber, Handbook of Optical Materials, vol. 19 (CRC press, 2002)

    Google Scholar 

  33. C.J. Lasance, A. Poppe (ed.), Thermal Management for LED Applications (Springer, Berlin, 2016)

    Google Scholar 

  34. G. Abbate, U. Bernini, E. Ragozzino, F. Somma, The temperature dependence of the refractive index of water. J. Phys. D Appl. Phys. 11(8), 1167 (1978)

    Article  ADS  Google Scholar 

  35. J.R. Janesick, Scientific Charge-Coupled Devices, vol. 83 (SPIE press, 2001)

    Google Scholar 

  36. L. Niu, N. Zhang, H. Liu, X. Zhou, W. Knoll, Integrating plasmonic diagnostics and microfluidics. Biomicrofluidics 9(5), 052611 (2015)

    Article  Google Scholar 

  37. Y. Song, D. Cheng, L. Zhao (eds.) Microfluidics: Fundamentals, Devices, and Applications (Wiley, 2018)

    Google Scholar 

  38. L. da Fontoura Costa, R.M. Cesar, Shape Classification and Analysis: Theory and Practice (CRC Press, Inc, 2009)

    Google Scholar 

  39. T. Klinger, Image Processing with LabVIEW and IMAQ Vision (Prentice Hall Professional, 2003)

    Google Scholar 

  40. A. Zybin, D. Boecker, V.M. Mirsky, K. Niemax, Enhancement of the detection power of surface plasmon resonance measurements by optimization of the reflection angle. Anal. Chem. 79(11), 4233–4236 (2007)

    Article  Google Scholar 

  41. S. Nizamov, V. Scherbahn, V.M. Mirsky, Self-referencing SPR-sensor based on integral measurements of light intensity reflected by arbitrarily distributed sensing and referencing spots. Sens. Actuators B: Chem. 207, 740–747 (2015)

    Article  Google Scholar 

  42. S. Nizamov, V.M. Mirsky, Self-referencing SPR-biosensors based on penetration difference of evanescent waves. Biosens. Bioelectron. 28(1), 263–269 (2011)

    Article  Google Scholar 

  43. A.K. Sharma, B.D. Gupta, On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys. 101(9), 093111 (2007)

    Article  ADS  Google Scholar 

  44. B.H. Ong, X. Yuan, S.C. Tjin, J. Zhang, H.M. Ng, Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sens. Actuators B: Chem. 114(2), 1028–1034 (2006)

    Article  Google Scholar 

  45. V. Švorčík, P. Slepička, J. Švorčíková, M. Špírková, J. Zehentner, V. Hnatowicz, Characterization of evaporated and sputtered thin Au layers on poly (ethylene terephthalate). J. Appl. Polym. Sci. 99(4), 1698–1704 (2006)

    Article  Google Scholar 

  46. B.A. Sexton, B.N. Feltis, T.J. Davis, Characterisation of gold surface plasmon resonance sensor substrates. Sens. Actuators A 141(2), 471–475 (2008)

    Article  Google Scholar 

  47. S.A. Zynio, A.V. Samoylov, E.R. Surovtseva, V.M. Mirsky, Y.M. Shirshov, Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2(2), 62–70 (2002)

    Article  Google Scholar 

  48. D.V. Nesterenko, Z. Sekkat, Surface plasmon sensing with different metals in single and double layer configurations. Appl. Opt. 51(27), 6673–6682 (2012)

    Article  ADS  Google Scholar 

  49. L. Pang, G.M. Hwang, B. Slutsky, Y. Fainman, Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor. Appl. Phys. Lett. 91(12), 123112 (2007)

    Article  ADS  Google Scholar 

  50. J.F. Masson, M.P. Murray-Méthot, L.S. Live, Nanohole arrays in chemical analysis: manufacturing methods and applications. Analyst 135(7), 1483–1489 (2010)

    Article  ADS  Google Scholar 

  51. C. Genslein, P. Hausler, E.M. Kirchner, R. Bierl, A.J. Baeumner, T. Hirsch, Detection of small molecules with surface plasmon resonance by synergistic plasmonic effects of nanostructured surfaces and graphene, in Plasmonics in Biology and Medicine XIV, vol. 10080, p. 100800F. International Society for Optics and Photonics (2017)

    Google Scholar 

  52. C. Genslein, P. Hausler, E.M. Kirchner, R. Bierl, A.J. Baeumner, T. Hirsch, Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples. Beilstein J. Nanotechnol. 7, 1564 (2016)

    Article  Google Scholar 

  53. M.C. Estevez, M.A. Otte, B. Sepulveda, L.M. Lechuga, Trends and challenges of refractometric nanoplasmonic biosensors: A review. Anal. Chim. Acta 806, 55–73 (2014)

    Article  Google Scholar 

  54. D. Herbert, Batch to Continuous. Control 22(9), 48–55 (2009)

    Google Scholar 

  55. M. Heim, Chemie im Blut. Zeit Online (2018). https://www.zeit.de/gesellschaft/zeitgeschehen/2018-01/trinkwasser-chemikalien-bayern-altoetting-ueberland/komplettansicht

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hausler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hausler, P., Roth, C., Vitzthumecker, T., Bierl, R. (2019). Miniaturized Surface Plasmon Resonance Based Sensor Systems—Opportunities and Challenges. In: Ribeiro, P., Raposo, M. (eds) Optics, Photonics and Laser Technology 2018. Springer Series in Optical Sciences, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-30113-2_8

Download citation

Publish with us

Policies and ethics