Skip to main content

Centimeter-Resolution Long-Distance Optical Fiber Monitoring

  • Chapter
  • First Online:
Optics, Photonics and Laser Technology 2018

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 223))

  • 629 Accesses

Abstract

The worldwide dense deployment of optical fiber networks has been driven by the desire of higher transmission capacity necessary for high-level data communications. Supporting all the higher Open Systems Interconnection (OSI) layers is the physical layer represented by the optical fiber, which, unfortunately, suffers from mechanical fragility. The robust operation of the whole network, therefore, can be jeopardized by mundane events such as the strangling of the fiber cable caused by a passing truck on a highway or by a break due to the action of rodents. In order to deal with this issue, physical layer supervision is of the utmost importance and, over the years, reflectometry techniques have been developed and upgraded so that the protection of the optical fibers is ensured. This chapter performs a brief revision of such reflectometry techniques with special focus on the Optical Time Domain Reflectometry and on one of its most interesting recent developments, the Photon-Counting Optical Time Domain Reflectometry. It further presents a technique for centimeter-resolution long-distance measurements of optical fibers in practical times and discusses its performance in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Kao, G.A. Hockham, Dielectric-fibre surface waveguides for optical frequencies, in Proceedings of the Institution of Electrical Engineers, vol. 113 (IET 1966), pp. 1151–1158

    Google Scholar 

  2. G.P. Agrawal, Fiber-Optic Communication Systems. Wiley (1997)

    Google Scholar 

  3. J.P. Kilmer, A. DeVito, H.H. Yuce, C.J. Wieczorek, J.P. Varachi, W.T. Anderson, Optical cable reliability: lessons learned from post-mortem analyses, in Fiber Optics Reliability: Benign and Adverse Environments IV, International Society for Optics and Photonics, vol. 1366, (1991), pp. 85–92

    Google Scholar 

  4. S. Zemon, A. Budman, T. Wei, E. Eichen, K. Ma, Decay of transmitted light during fiber breaks-implications for break location. J. Light. Technol. 12, 1532–1535 (1994)

    Article  ADS  Google Scholar 

  5. J.W. Strutt, Xv. on the light from the sky, its polarization and colour. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41, 107–120 (1871)

    Google Scholar 

  6. J.W. Strutt, Xxxiv. on the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Lond. Edinb. Dublin Philos. Mag. J. Sci. 47, 375–384 (1899)

    Google Scholar 

  7. J.W. Strutt, Lviii. on the scattering of light by small particles. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41, 447–454 (1871)

    Google Scholar 

  8. D. Derickson, Fiber Optic - Test and Measurement (Prentice Hall, 1998)

    Google Scholar 

  9. L. Kissel, R. Pratt, Rayleigh scattering elastic photon scattering by bound electrons. In: Atomic inner-shell physics. Physics of Atoms and Molecules. 1 edn. (Springer, Berlin, 1985), pp. 465–532

    Google Scholar 

  10. F. Calliari, Automatic high-dynamic and high-resolution photon counting OTDR for optical fiber network monitoring. Master’s thesis, PUC-Rio (2017)

    Google Scholar 

  11. M.K. Barnoski, M.D. Rourke, S.M. Jensen, R.T. Melville, Optical time domain reflectometer. Appl. Opt. 16, 2375–2379 (1977)

    Article  ADS  Google Scholar 

  12. Anritsu: MT9083 Series - MT9083A/B/C ACCESS master. Technical report, Specifications Sheet (2011)

    Google Scholar 

  13. R.L. Jungerman, D.W. Dolfi, Frequency domain optical network analysis using integrated optics. IEEE J. Quantum Electron. 27, 580–587 (1991)

    Article  ADS  Google Scholar 

  14. J.P. von der Weid, R. Passy, G. Mussi, N. Gisin, On the characterization of optical fiber network components with optical frequency domain reflectometry. J. Light. Technol. 15, 1131–1141 (1997)

    Article  Google Scholar 

  15. K. Yuksel, M. Wuilpart, V. Moeyaert, P. Mégret, Optical frequency domain reflectometry: a review, in ICTON’09. 11th International Conference on Transparent Optical Networks, 2009. (IEEE, 2009), pp. 1–5

    Google Scholar 

  16. G.C. Amaral, A. Baldivieso, J.D. Garcia, D.C. Villafani, R.G. Leibel, L.E.Y. Herrera, P.J. Urban, J.P. von der Weid, A low-frequency tone sweep method for in-service fault location in subcarrier multiplexed optical fiber networks. J. Light. Technol. 35, 2017–2025 (2017)

    Article  ADS  Google Scholar 

  17. J. Nakayama, K. Iizuka, J. Nielsen, Optical fiber fault locator by the step frequency method. Appl. Opt. 26, 440–443 (1987)

    Article  ADS  Google Scholar 

  18. N. Park, J. Lee, J. Park, J.G. Shim, H. Yoon, J.H., Kim, K. Kim, J.O. Byun, G. Bolognini, D. Lee et al., Coded optical time domain reflectometry: principle and applications, in Asia-Pacific Optical Communications, International Society for Optics and Photonics (2007), p. 678129

    Google Scholar 

  19. R. Liao, M. Tang, C. Zhao, H. Wu, S. Fu, D. Liu, P.P. Shum, Harnessing oversampling in correlation-coded otdr (2017). arXiv:1705.05241

  20. Z. Xie, L. Xia, Y. Wang, C. Yang, C. Cheng, D. Liu, Fiber fault detection with high accuracy using chaotic signal from an soa ring reflectometry. IEEE Photonics Technol. Lett. 25, 709–712 (2013)

    Article  ADS  Google Scholar 

  21. X. Dong, A. Wang, J. Zhang, H. Han, T. Zhao, X. Liu, Y. Wang, Combined attenuation and high-resolution fault measurements using chaos-OTDR. IEEE Photonics J. 7, 1–6 (2015)

    Google Scholar 

  22. D.V. Caballero, J.P. von der Weid, P.J. Urban, Tuneable OTDR measurements for WDM-PON monitoring, in 2013 SBMO/IEEE MTT-S International Microwave Optoelectronics Conference (IMOC) (2013), pp. 1–5

    Google Scholar 

  23. P. Eraerds, M. Legré, J. Zhang, H. Zbinden, N. Gisin, Photon counting OTDR: advantages and limitations. J. Light. Technol. 28, 952–964 (2010)

    Article  ADS  Google Scholar 

  24. G.C. Amaral, J.D. Garcia, L.E. Herrera, G.P. Temporao, P.J. Urban, J.P. von der Weid, Automatic fault detection in WDM-PON with tunable photon counting OTDR. J. Light. Technol. 33, 5025–5031 (2015)

    Article  ADS  Google Scholar 

  25. S. Cova, N. Ghioni, A. Lotito, I. Rech, F. Zappa, Evolution and prospects for single-photon avalanche diodes and quenching circuits. J. Mod. Opt. 15, (2004)

    Google Scholar 

  26. L.E.Y. Herrera, Reflectometria óptica de alta resolução por contagem de fótons. Ph.D. thesis, PUC-Rio (2015)

    Google Scholar 

  27. L. Herrera, G. Amaral, J.P. von der Weid, Ultra-high-resolution tunable PC-OTDR for PON monitoring in avionics, in Optical Fiber Communications Conference and Exhibition (OFC), 2015 (IEEE, 2015), pp. 1–3

    Google Scholar 

  28. G.C. do Amaral, FPGA applications on single photon detection systems. Master’s thesis, PUC-Rio (2014)

    Google Scholar 

  29. L.E. Herrera, F. Calliari, J.D. Garcia, G.C. do Amaral, J.P. von der Weid, High resolution automatic fault detection in a fiber optic link via photon counting OTDR, in Optical Fiber Communication Conference, Optical Society of America (2016) M3F.4

    Google Scholar 

  30. Santec Corporation, Ultra-Wideband Source UWS-1000H Technical report, Specifications Sheet (2016)

    Google Scholar 

  31. F.A. Ghonaim, T.E. Darcie, S. Ganti, Impact of sdn on optical router bypass. IEEE/OSA J. Opt. Commun. Netw. 10, 332–343 (2018)

    Article  Google Scholar 

  32. R.L. Brown, J. Durbin, J.M. Evans, Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc. Ser. B (Methodological) 149–192 (1975)

    Google Scholar 

  33. W.S. Rea, M. Reale, C. Cappelli, J.A. Brown, Identification of changes in mean with regression trees: an application to market research. Econ. Rev. 29, 754–777 (2010)

    Article  MathSciNet  Google Scholar 

  34. M. Storath, A. Weinmann, L. Demaret, Jump-sparse and sparse recovery using potts functionals. IEEE Trans. Signal Process. 62, 3654–3666 (2014)

    Article  MathSciNet  Google Scholar 

  35. E.J. Candes, M.B. Wakin, S.P. Boyd, Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    Article  MathSciNet  Google Scholar 

  36. S.J. Kim, K. Koh, S. Boyd, D. Gorinevsky, \(\ell _1\) trend filtering. SIAM Rev 51, 339–360 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  37. J.P. von der Weid, M.H. Souto, J.D. Garcia, G.C. Amaral, Adaptive filter for automatic identification of multiple faults in a noisy OTDR profile. J. Light. Technol. 34, 3418–3424 (2016)

    Article  Google Scholar 

  38. K. De Souza, Significance of coherent rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous brillouin scattering. Meas. Sci. Technol. 17, 1065 (2006)

    Article  ADS  Google Scholar 

  39. M. Souto, J.D. Garcia, G.C. Amaral, \(\ell _1\) adaptive trend filter via fast coordinate descent, in Sensor Array and Multichannel Signal Processing Workshop (SAM), 2016 (IEEE, 2016), pp. 1–5

    Google Scholar 

  40. F. Calliari, L.E. Herrera, J.P. von der Weid, G.C. Amaral, High-dynamic and high-resolution automatic photon counting OTDR for optical fiber network monitoring, in 6th International Conference on Photonics. Optics and Laser Technology, vol. 1 (PHOTOPTICS, 2018), pp. 82–90

    Google Scholar 

  41. P. Anandarajah, R. Maher, Y. Xu, S. Latkowski, J. O’carroll, S. Murdoch, R. Phelan, J. O’Gorman, L. Barry, Generation of coherent multicarrier signals by gain switching of discrete mode lasers. IEEE Photonics J. 3 112–122 (2011)

    Google Scholar 

  42. I.D. Quantique, id210 - Advanced System for Single Photon Detection, Technical report, Specifications Sheet, (2011)

    Google Scholar 

  43. I. Rech, S. Marangoni, D. Resnati, M. Ghioni, S. Cova, Multipixel single-photon avalanche diode array for parallel photon counting applications. J. Mod. Opt. 56, 326–333 (2009)

    Article  ADS  Google Scholar 

  44. L. Herrera, G. Amaral, J. von der Weid, Investigation of bend loss in single mode fibers with ultra-high-resolution photon-counting optical time domain reflectometer. Appl. Opt. 55, 1177–1182 (2016)

    Article  ADS  Google Scholar 

  45. A. Shahpari, R. Ferreira, V. Ribeiro, A. Sousa, S. Ziaie, A. Tavares, Z. Vujicic, F.P. Guiomar, J.D. Reis, A.N. Pinto et al., Coherent ultra dense wavelength division multiplexing passive optical networks. Opt. Fiber Technol. 26, 100–107 (2015)

    Article  ADS  Google Scholar 

  46. K. Shimizu, T. Horiguchi, Y. Koyamada, Characteristics and reduction of coherent fading noise in rayleigh backscattering measurement for optical fibers and components. J. Light. Technol. 10, 982–987 (1992)

    Article  ADS  Google Scholar 

  47. A.F. Elrefaie, R.E. Wagner, D. Atlas, D. Daut, Chromatic dispersion limitations in coherent lightwave transmission systems. J. Light. Technol. 6, 704–709 (1988)

    Article  ADS  Google Scholar 

  48. F. Calliari, G.C. do Amaral, L.E.Y. Herrera, High Dynamic and High Resolution Automatic Photon Counting OTDR (2017), https://www.youtube.com/watch?v=KQn9Du2l4NQ. Accessed on 27 April 2018

Download references

Acknowledgements

We would like to thank to the brazilian agency CNPq for the financial support, without which this work would not have been realized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Calliari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calliari, F., Herrera, L., von der Weid, J.P., Amaral, G. (2019). Centimeter-Resolution Long-Distance Optical Fiber Monitoring. In: Ribeiro, P., Raposo, M. (eds) Optics, Photonics and Laser Technology 2018. Springer Series in Optical Sciences, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-30113-2_2

Download citation

Publish with us

Policies and ethics