Skip to main content

Numerical Simulation of the Plasma Inside a Glow Discharge Millimeter Wave Detector

  • Chapter
  • First Online:
Optics, Photonics and Laser Technology 2018

Abstract

Nowadays, Terahertz (THz) and mm-waves are encountered in many branches such as security, industry and medicine. However, limitations in existing commercial detectors in terms of cost, speed and responsivity prevent this highly advantageous region of the electromagnetic spectrum from being used more efficiently. For these reasons, neon indicator lamps, otherwise known as glow discharge detectors (GDDs), have succeeded in attracting the attention of researchers, not only because they are cheap, but also because of their better performance to other technologies. In these detectors, detection occurs as a result of the interaction of THz/mm-wave with the plasma in the lamp. Although this interaction has been tried to be explained qualitatively using various analytical models, there has been no accurate quantitative explanation about this interaction in the literature. The problem is mainly due to the confined plasma environment which can be difficult to resolve with equilibrium models. As known, GDDs are non-local thermal equilibrium plasma lamps, and such plasmas need to be modeled with a kinetic approach. For that reason, in this study, parallel 1d3v Particle in Cell/Monte Carlo Collision (PIC/MCC) simulation of the plasma in the neon lamp is performed. This simulation will form the basis for the planned investigations into understanding the effects of THz/mm-waves on the plasma. The kinetic approach employed in the simulation allows us to accurately understand and predict the plasma parameters causing the glow discharge in GDDs. The results are checked using experiments performed on home-built discharge glow chambers with similar gap dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.S. Kopeika, Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties. IEEE Trans. Plasma Sci. 6, 139–157 (1978)

    Article  ADS  Google Scholar 

  2. A. Abramovich, N.S. Kopeika, D. Rozban, E. Farber, Inexpensive detector for terahertz imaging. Appl. Opt. 46, 7207–7211 (2007)

    Article  ADS  Google Scholar 

  3. A. Abramovich, N.S. Kopeika, D. Rozban, E. Farber, Terahertz detection mechanism of inexpensive sensitive glow discharge detector. J. Appl. Phys. 103, 093306 (2008)

    Article  ADS  Google Scholar 

  4. L. Hou, W. Shi, Fast terahertz continuous-wave detector based on weakly ionized plasma. IEEE Electron Device Lett. 33, 1583–1585 (2012)

    Article  ADS  Google Scholar 

  5. C. Burroughs, A. Bronwell, Teleteknik II, 62 (1952)

    Google Scholar 

  6. M.A. Lampert, A.D. White, Microwave techniques for studying discharges in gases. Electron. Commun. 30, 124–128 (1953)

    Google Scholar 

  7. B.J. Udelson, Effect of microwave signals incident upon different regions of a dc hydrogen glow discharge. J. Appl. Phys. 28, 380–381 (1957)

    Article  ADS  Google Scholar 

  8. G.D. Lobov, Gas discharge detector of microwave oscillations. Radiotekh. Electron. 5, 152–165 (1960)

    Google Scholar 

  9. P.J.W. Severin, The Interaction of Microwaves with the Cathode Fall and Negative Glow in a Glow Discharge (Philips Research Laboratories, Eindhoven, Netherlands, 1965)

    Google Scholar 

  10. N.H. Farhat, A plasma microwave power density detector. Proc. IEEE 52, 1053–1054 (1964)

    Article  Google Scholar 

  11. P.J.W. Severin, A.G. Van Nie, A Simple and rugged wide-band gas discharge detector for millimeter waves. IEEE Trans. Microw. Theory Tech. 14, 431–436 (1966)

    Article  ADS  Google Scholar 

  12. N.S. Kopeika, Theory of a fast, sensitive, submillimeter wave glow discharge detector. Int. J. Infrared Millim. Waves 5, 1333–1348 (1984)

    Article  ADS  Google Scholar 

  13. N.S. Kopeika, On the mechanism of glow discharge detection of microwave and millimeter-wave radiation. Proc. IEEE 63, 981–982 (1975)

    Article  Google Scholar 

  14. C. Kusoglu-Sarikaya, I. Rafatov, A.A. Kudryavtsev, Particle in cell/Monte Carlo collision analysis of the problem of identification of impurities in the gas by the plasma electron spectroscopy method. Phys. Plasmas 23, 063524 (2016)

    Article  ADS  Google Scholar 

  15. A. Bogaerts, E. Neyts, R. Gijbels, J.V.D. Mullen, Gas discharge plasmas and their applications. Spectochim. Acta B 57, 609–658 (2002)

    Article  ADS  Google Scholar 

  16. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994)

    Google Scholar 

  17. A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications (IEEE Press, New York, 1994)

    Book  Google Scholar 

  18. T. Hammer, Applications of plasma technology in environmental techniques. Contrib. Plasma Phys. 39, 441–462 (1999)

    Article  ADS  Google Scholar 

  19. D.M. Goebel, I. Katz, Fundamental of Electric Propulsion: Ion and Hall Thrusters (Wiley, New Jersey, 2008)

    Book  Google Scholar 

  20. J.R. Coatan, A.M. Marsden, Lamps and Lightning (Arnold, London, 1997)

    Google Scholar 

  21. A. Sobel, Plasma displays. IEEE Trans. Plasma Sci. 19, 1032–1047 (1991)

    Article  ADS  Google Scholar 

  22. N.S. Kopeika, J. Rosenbaum, R. Kastner, Abnormal glow discharge detection of visible radiation. Appl. Opt. 15, 1610–1615 (1976)

    Article  ADS  Google Scholar 

  23. P.H. Siegel, Terahertz technology. IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002)

    Article  ADS  Google Scholar 

  24. D.T. Leisawitz, W.C. Danchi, M.J. DiPirro, L.D. Feinberg, D.Y. Gezari, M. Hagopian, W.D. Langer, J.C. Mather, S.H. Moseley, M. Shao, R.F. Silverberg, J.G. Staguhn, M.R. Swain, H.W. Yorke, X. Zhang, Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. Proc. SPIE 4013, 36–46 (2000)

    Article  ADS  Google Scholar 

  25. L. Hou, H. Park, X. Zhang, Terahertz wave imaging system based on glow discharge detector. IEEE J. Sel. Top. Quant. 17, 177–182 (2011)

    Article  Google Scholar 

  26. T.S. Hartwick, D.T. Hodges, D.H. Barker, F.B. Foote, Far infrared imagery. Appl. Opt. 15, 1919–1922 (1976)

    Article  ADS  Google Scholar 

  27. M.C. Kemp, P.F. Taday, B.E. Cole, J.A. Cluff, A.J. Fitzgerald, W.R. Tribe, Security applications of terahertz technology. Proc. SPIE 5070, 44–52 (2003)

    Article  ADS  Google Scholar 

  28. W.R. Tribe, D.A. Newnham, P.F. Taday, M.C. Kemp, Hidden object detection: security applications of terahertz technology. Proc. SPIE 5354, 168–176 (2004)

    Article  ADS  Google Scholar 

  29. P.F. Taday, Applications of terahertz spectroscopy to pharmaceutical sciences. Philos. Trans. R. Soc. London Ser. A 362, 351–364 (2004)

    Article  ADS  Google Scholar 

  30. C.F. Strachan, P.F. Taday, D.A. Newnham, K.C. Gordon, J.A. Zeitler, M. Pepper, T. Rades, Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. J. Pharm. Sci. 94, 837–846 (2005)

    Article  Google Scholar 

  31. E. Pickwell, B.E. Cole, A.J. Fitzgerald, M. Pepper, V.P. Wallace, In vivo study of human skin using pulsed terahertz radiation. Phys. Med. Biol. 49, 1595–1607 (2004)

    Article  Google Scholar 

  32. V.P. Wallace, A.J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, D.D. Arnone, Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br. J. Dermatol. 151, 424–432 (2004)

    Article  Google Scholar 

  33. D.M. Mittleman, R.H. Jacobsen, M.C. Nuss, T-Ray Imaging. IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996)

    Article  ADS  Google Scholar 

  34. N. Kukutsu, Y. Kado, Overview of millimeter and terahertz wave application research. NTT Tech. Rev. 7, 1–6 (2009)

    Google Scholar 

  35. F.A. Benson, G. Mayo, Effects of ambient-temperature variations on glow-discharge tube characteristics. J. Sci. Instrum. 31, 118–120 (1954)

    Article  ADS  Google Scholar 

  36. Private communication. https://www.intl-lighttech.com/specialty-light-sources/neon-lamps. Cited 13 April 2018

  37. W.G. Miller, Using and Understanding Miniature Neon Lamps (Howard W. Sams & Co., Inc, Indianapolis, 1969)

    Google Scholar 

  38. L. Hou, W. Shi, S. Chen, Z. Yan, Terahertz continuous wave detection using weakly ionized plasma in inert gases. IEEE Electron Device Lett. 34, 689–691 (2013)

    Article  ADS  Google Scholar 

  39. Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, Germany, 1991)

    Book  Google Scholar 

  40. E.W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, NY, USA, 1964)

    Google Scholar 

  41. N. S. Kopeika, J. Rosenbaum, Subnormal glow discharge detection of optical and microwave radiation. IEEE Trans. Plasma Sci. 4, 51–61 (1976)

    Google Scholar 

  42. N.S. Kopeika, Noise spectra of commercial indicator-lamp glow-discharge detectors. Int. J. Electron. 39, 209–218 (1975)

    Article  Google Scholar 

  43. N.S. Kopeika, N.H. Farhat, Video detection of millimeter waves with glow discharge tubes: part I-physical description; part II-experimental results. IEEE Trans. Electron Devices 22, 534–548 (1975)

    Article  ADS  Google Scholar 

  44. K. Nanbu, Probability theory of electron-molecule, ion-molecule, molecule-molecule, and coulomb collisions for particle modelling of materials processing plasmas and cases. IEEE Trans. Plasma Sci. 28, 971–990 (2000)

    Article  ADS  Google Scholar 

  45. S. Longo, Monte carlo models of electron and ion transport in non-equilibrium plasmas. Plasma Sources Sci. Technol. 9, 468–476 (2000)

    Article  ADS  Google Scholar 

  46. Compilation of electron cross sections used by A. V. Phelps. http://jilawww.colorado.edu/~avp/collision_data/electronneutral/ELECTRON.TXT. Cited 4 May 2018

  47. Phelps database. http://www.lxcat.net. Cited 4 May 2018

  48. Biagi database (Magboltz versions 8.9 and higher). http://www.lxcat.net. Cited 11 April 2018

  49. A.V. Phelps, Diffusion, de-excitation, and three-body collision coefficients for excited neon atoms. Phys. Rev. 114, 1011–1025 (1959)

    Article  ADS  Google Scholar 

  50. A.V. Phelps, J.P. Molnar, Lifetimes of metastable states of noble gases. Phys. Rev. 89, 1202–1212 (1953)

    Article  ADS  Google Scholar 

  51. W.H. Cramer, Elastic and inelastic scattering of lowvelocity ions: He+ in Ne, Ne+ in He, and Ne+ in Ne. J. Chem. Phys. 28, 688–690 (1958)

    Article  ADS  Google Scholar 

  52. C. Kusoglu-Sarikaya, H. Altan, D. Akbar, Parallel 1d3v particle in cell/monte carlo collision (PIC/MCC) simulation of a glow discharge millimeter wave detector, in Proceedings of the 6th International Conference on Photonics, Optics and Laser Technology, vol. 1 (2018) pp. 110–115

    Google Scholar 

  53. H.D. Hagstrum, Auger ejection of electrons from tungsten by noble gas ions. Phys. Rev. 104, 317–318 (1956)

    Article  ADS  Google Scholar 

  54. H. Bruining, Physics and Applications of Secondary Electron Emission (Philips Research Laboratories, Netherlands, Eindhoven, 1954)

    MATH  Google Scholar 

  55. L.B. Loeb, Basic Processes of Gaseous Electronics (University of California Press, California, 1960)

    MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) 115F226. This research is also sponsored in part by the NATO Science for Peace and Security Programme under grant MD.SFPP 984775. The simulations were performed using High Performance and Grid Computing Center (TRUBA Resources) at TUBITAK ULAKBIM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemre Kusoglu-Sarikaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kusoglu-Sarikaya, C., Akbar, D., Altan, H. (2019). Numerical Simulation of the Plasma Inside a Glow Discharge Millimeter Wave Detector. In: Ribeiro, P., Raposo, M. (eds) Optics, Photonics and Laser Technology 2018. Springer Series in Optical Sciences, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-30113-2_10

Download citation

Publish with us

Policies and ethics