Skip to main content

Enhanced Energy Absorption Performance of Liquid Nanofoam-Filled Thin-Walled Tubes under Dynamic Impact

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

Thin-walled structures have been widely used among other energy absorbing structures in automotive, aerospace and other industries, due to their high energy absorption capacity and light weight. In some cases, these structural components were filled with metallic foams to further improve their energy absorption performance and capacity. This may lead to an increase in the structural component weight. In this study, a highly compressible liquid filler, i.e. liquid nanofoam (LN), has been introduced into the thin-walled tubes. We have characterized the mechanical response of these LN-filled tubes (LNFTs) by using quasi-static compression tests and dynamic impacts. The quasi-static compression tests are conducted by an MTS system. Results show that the energy absorption capacity of LNFTs is 45% higher than that of identical empty tubes. The dynamic behavior of LNFTs is characterized by using a gas gun apparatus at impact speed of 6.7 m/s. It is found that the energy absorption capacity of LNFTs is 76% higher than that of identical empty tubes. Importantly, by increasing the strain rate from quasi-static condition (10−2 s−1) to intermediate range (102 s−1), the energy absorption capacity of LNFTs is increased by 54% without increasing the working pressure of the system. The strain rate sensitive behavior of LNFTs suggests that LNFTs can be used as advanced energy absorber whose impact mitigation capability is adaptive to the impact energy levels. These findings warrant future considerations of these new liquid nanofoam filled thin-walled structures for vehicle crashworthiness and infrastructure protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, G., Yu, T.X.: Energy Absorption of Structures and Materials. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  2. Wierzbicki, T., Abramowicz, W.: On the crushing mechanics of thin-walled structures. J. Appl. Mech. 50(4a), 727 (1983)

    Article  Google Scholar 

  3. Chen, W., Wierzbicki, T.: Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-Walled Struct. 39(4), 287–306 (2001)

    Article  Google Scholar 

  4. Zarei, H.R., Kröger, M.: Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Struct. 46(2), 214–221 (2008)

    Article  Google Scholar 

  5. Hangai, Y., Saito, M., Utsunomiya, T., Kitahara, S., Kuwazuru, O., Yoshikawa, N.: Fabrication of aluminum foam-filled thin-wall steel tube by friction welding and its compression properties. Materials. 6(9), 6796–6810 (2014)

    Article  Google Scholar 

  6. Taherishargh, M., Vesenjak, M., Belova, I.V., Krstulović-Opara, L., Murch, G.E., Fiedler, T.: In situ manufacturing and mechanical properties of syntactic foam filled tubes. Mater. Des. 99, 356–368 (2016)

    Article  Google Scholar 

  7. Rajendran, R., Prem Sai, K., Chandrasekar, B., Gokhale, A., Basu, S.: Impact energy absorption of aluminium foam fitted AISI 304L stainless steel tube. Mater. Des. 30(5), 1777–1784 (2009)

    Article  Google Scholar 

  8. Hanssen, A.G., Langseth, M., Hopperstad, O.S.: Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. Int. J. Impact Eng. 24(5), 475–507 (2000)

    Article  Google Scholar 

  9. Bonaccorsi, L., Proverbio, E., Raffaele, N.: Effect of the interface bonding on the mechanical response of aluminium foam reinforced steel tubes. J. Mater. Sci. 45(6), 1514–1522 (2010)

    Article  Google Scholar 

  10. Chen, X., Qiao, Y.: Science and prospects of using nanoporous materials for energy absorption. MRS Proc. 1041, (2007)

    Google Scholar 

  11. Li, M., Lu, W.: Liquid marble: a novel liquid nanofoam structure for energy absorption. AIP Adv. 7(5), 055312 (2017)

    Article  Google Scholar 

  12. Zhang, Y., Li, M., Gao, Y., Xu, B., Lu, W.: Compressing liquid nanofoam system: liquid infiltration or nanopore deformation? Nanoscale. (2018)

    Google Scholar 

  13. Li, M., Xu, L., Lu, W.: Nanopore size effect on critical infiltration depth of liquid nanofoam as a reusable energy absorber. J. Appl. Phys. 125(4), 044303 (2019)

    Article  Google Scholar 

  14. Sun, Y., Li, Y., Zhao, C., Wang, M., Lu, W., Qiao, Y.: Crushing of circular steel tubes filled with nanoporous-materials-functionalized liquid. Int. J. Damage Mech. 0(0), 1–12 (2016)

    Google Scholar 

  15. Li, M., Li, J., Barbat, S., Baccouche, R., Lu, W.: Enhanced filler-tube wall interaction in liquid nanofoam-filled thin-walled tubes. Compos. Struct. 200, 120–126 (2018)

    Article  Google Scholar 

  16. Liu, Y., Schaedler, T.A., Jacobsen, A.J., Lu, W., Qiao, Y., Chen, X.: Quasi-static crush behavior of hollow microtruss filled with NMF liquid. Compos. Struct. 115(1), 29–40 (2014)

    Article  Google Scholar 

  17. Lu, W., Han, A., Kim, T., Chow, B.J., Qiao, Y.: Endcapping treatment of inner surfaces of a hexagonal mesoporous silica. J. Adhes. Sci. Technol. 26(12–17), 2135–2141 (2012)

    Google Scholar 

  18. Chen, X., Surani, F.B., Kong, X., Punyamurtula, V.K., Qiao, Y.: Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid. Appl. Phys. Lett. 89(24), 1–3 (2006)

    Google Scholar 

  19. Sun, Y., Xu, J., Zhao, C., Li, P., Li, Y.: Exploring a new candidate of energy absorber: thin-walled tube structures filled with nanoporous material functionalized liquid. IRCOBI Conference. 2014, 578–586 (2014)

    Google Scholar 

  20. Xu, B., Chen, X., Lu, W., Zhao, C., Qiao, Y.: Non-dissipative energy capture of confined liquid in nanopores. Appl. Phys. Lett. 104(20), 2012–2016 (2014)

    Article  Google Scholar 

  21. Lu, W.: Novel Protection Mechanism of Blast and Impact Waves by Using Nanoporous Materials, Dynamic Behavior of Materials, vol. 1, pp. 177–183. Springer International Publishing, Berlin (2016)

    Google Scholar 

Download references

Acknowledgement

This work was financially supported by Ford-MSU Alliance program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhe Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Barbat, S., Baccouche, R., Belwafa, J., Lu, W. (2020). Enhanced Energy Absorption Performance of Liquid Nanofoam-Filled Thin-Walled Tubes under Dynamic Impact. In: Lamberson, L. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30021-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30021-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30020-3

  • Online ISBN: 978-3-030-30021-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics