Skip to main content

Nanotechnology: Science and Technology at New Length Scale with Implications in Defense

  • Chapter
  • First Online:
Nanotechnology for Defence Applications
  • 984 Accesses

Abstract

Nanotechnology is a buzzword in the present era and is an outstanding technology of manipulating matter at a nanometer-length scale (10−9 m) to yield materials with unique properties and devices to perform very complex functions. It has broken all the boundaries between all the disciplines of science and technology to engage researchers working on the fundamental and applied aspects by joining hands. New physical and chemical phenomena such as very high surface-to-volume ratio, quantum confinement, creation of discrete energy states giving birth to unusual characteristics such as band gap openings in metal, widening in semiconductor and insulators, and very high chemical reactivity to make the materials as wonderful catalyst, adsorbents, and sensors. Some of these unusual characteristics are being exploited in achieving fuel-efficient lightweight vehicles and weapon platforms, lightweight and high-strength body armors, management of signatures to camouflage military objects, management of weapons of mass destruction (CBRN), and smart soldiers, along with making paradigm shifts in future defense technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Kumar, S. Kumbhat, Essentials in Nanoscience and Nanotechnology (Wiley, USA, 2016)

    Google Scholar 

  2. Drexler K.E. Engines of Creation: The Coming Era of Nanotechnology, (Anchorbooks, USA, 2006)

    Google Scholar 

  3. D. Baxter, T. Maynard, Nanotechnology: Recent Developments, Risks and Opportunities Lloyd’s Report, 2007

    Google Scholar 

  4. C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2(4), MR17–MR71 (2007)

    Article  Google Scholar 

  5. Nanotechnologies — Vocabulary — Part 2: Nano-objects, International Organization for Standardization, 2015. Retrieved 2018-01-08

    Google Scholar 

  6. M.K. Hedayati, S. Fahr, C. Etrich, F. Faupel, C. Rockstuhland, M. Elbahri, The hybrid concept for realization of an ultra-thinplasmonic metamaterial antireflection coating andplasmonic rainbow. Nanoscale 6, 6037–6045 (2014)

    Article  CAS  Google Scholar 

  7. M. Aliofkhazraei (ed.), Chapter 8, in Comprehensive Guide forNanocoatings Technology, vol. 4, (Nova Science Publishers, Inc., 2015).; ISBN. 978- 1-63482-648-8

    Google Scholar 

  8. H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 4, 3779 (2011)

    Article  CAS  Google Scholar 

  9. C.H. Bowen, B. Dai, C.J. Sargent, W. Bai, P. Ladiwala, H. Feng, W. Huang, D.L. Kaplan, J.M. Galazka, F. Zhang, Recombinant Spidroins fully replicate primary mechanical properties of natural spider silk. Biomacromolecules 19, 3853–3860 (2018)

    Article  CAS  Google Scholar 

  10. N. Du et al., Design of superior spider silk: From nanostructure to mechanical properties. Biophys. J. 91(12), 4528–4535 (2006)

    Article  CAS  Google Scholar 

  11. J. Doyle, Ancient Maya painted ceramics, in Heilbrunn Timeline of Art History, (The Metropolitan Museum of Art, New York, 2000)

    Google Scholar 

  12. A. Kumar, Nanotechnology Development in India an Overview (Research and Information System for Developing Countries (RIS, India, December, 2014)

    Google Scholar 

  13. M. Faraday, X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)

    Article  Google Scholar 

  14. R. Feynman, There’s plenty of room at the bottom, in Feynman and Computation, (CRC Press, UK, 2018), pp. 63–76

    Google Scholar 

  15. N. Taniguchi, On the basic concept of ‘Nano-Technology’, Proceedings of the International Conference on Production Engineering, Tokyo, 1974

    Google Scholar 

  16. C.J. Chen, Introduction to scanning tunneling microscopy (Oxford University Press, UK 1993)

    Google Scholar 

  17. K. Eric Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, John Wiley & Sons, Inc. New York, NY, USA 1992

    Google Scholar 

  18. Mihail C. Roco and William Sims Bainbridge, Societal Implications of Nanoscience and Nanotechnology, Springer, Dordrecht, March, 2001

    Google Scholar 

  19. R. C. Haddon, R. E. Palmer, H. W. Kroto and P. A. Sermon, The Fullerenes: Powerful Carbon-Based Electron Acceptors, [and Discussion].” Philosophical Transactions: Physical Sciences and Engineering 343, 53–62 (1993)

    Google Scholar 

  20. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991)

    Article  CAS  Google Scholar 

  21. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  22. K. I. Tserpes, N. Silvestre (eds.), Modeling of Carbon Nanotubes, Graphene and their Composites (Springer, Berlin, 2014)

    Google Scholar 

  23. P.R. Sajanlal et al., Anisotropic nanomaterials: Structure, growth, assembly, and functions. Nano Rev. 2(1), 5883 (2011)

    Article  CAS  Google Scholar 

  24. www.codata.org/nanomaterials, version 1.0, Feb 2015

    Google Scholar 

  25. M. Pereiro, D. Baldomir, J.E. Arias, Unexpected magnetism of small silver clusters. Phys. Rev. A 75(6), 063204 (2007)

    Article  CAS  Google Scholar 

  26. M. Watanabe et al., Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117(10), 7190–7239 (2017)

    Article  CAS  Google Scholar 

  27. P.N. Kapoor et al., Mixed metal oxide nanoparticles, in Dekker Encyclopedia of Nanoscience and Nanotechnology, (pp. 2007–2015, CRC Press, USA, 2004)

    Google Scholar 

  28. J. Jose, G. Netto, Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J. Cosmet. Dermatol. 18(1), 315–321 (2019)

    Article  Google Scholar 

  29. Z. Pan et al., High-efficiency “green” quantum dot solar cells. Journal of the American Chemical Society 136(25), 9203–9210 (2014)

    Article  CAS  Google Scholar 

  30. R.V. Ramani et al., Nanotechnology: New hope of efficiency enhancement for solar evacuated tube collector. World J. Eng. 13(3), 199–205 (2016)

    Article  CAS  Google Scholar 

  31. R.H. Fernando, Nanocomposite and nanostructured coatings: Recent advancements. Nanotechnol. Appl. Coatings 1008, 2–21 (2009)

    Article  CAS  Google Scholar 

  32. T. Yadav, High volume manufacturing of nanoparticles and nano-dispersed particles at low cost, U.S. Patent Application No. 10/698,564

    Google Scholar 

  33. W.-Q. Wu et al., Recent advances in hierarchical three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. J. Mater. Chem. A 5(25), 12699–12717 (2017)

    Article  CAS  Google Scholar 

  34. I. Chilibon, J.N. Marat-Mendes, Ferroelectric ceramics by sol–gel methods and applications: A review. J. Sol-Gel Sci. Technol. 64(3), 571–611 (2012)

    Article  CAS  Google Scholar 

  35. J. Park et al., One-nanometer-scale size-controlled synthesis of monodisperse magnetic Iron oxide nanoparticles. Angew. Chem. Int. Ed. 44(19), 2872–2877 (2005)

    Article  CAS  Google Scholar 

  36. D.H. Kim et al., Effect of cu-O layer spacing on the magnetic field induced resistive broadening of high-temperature superconductors. Phys. C Superconductivity 177(4–6), 431–437 (1991)

    Article  CAS  Google Scholar 

  37. B.K. Chaudhuri, Some aspects of glass-ceramic superconductors. Bull. Mater. Sci. 18(1), 27–46 (1995)

    Article  CAS  Google Scholar 

  38. J.M. Phillips, Substrate selection for high-temperature superconducting thin films. J. Appl. Phys. 79(4), 1829–1848 (1996)

    Article  CAS  Google Scholar 

  39. I. Ganesh, A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. Int. Mater. Rev. 58(2), 63–112 (2013)

    Article  CAS  Google Scholar 

  40. X. Bai, F. Purcell-Milton, K.G.’k. Yuri, Optical properties, synthesis, and potential applications of cu-based ternary or quaternary anisotropic quantum dots, polytypic nanocrystals, and core/shell heterostructures. Nanomaterials 9(1), 85 (2019)

    Article  CAS  Google Scholar 

  41. S. Jun, E. Jang, Bright and stable alloy core/multishell quantum dots. Angew. Chem. Int. Ed. 52(2), 679–682 (2013)

    Article  CAS  Google Scholar 

  42. Khan, Zishan Husain, and M. Husain. "Carbon Nanotube and its Possible Applications." (2005)

    Google Scholar 

  43. Tserpes, Konstantinos I., and Nuno Silvestre, Molecular Dynamics Simulation and Continuum Shell Model for Buckling Analysis of Carbon Nanotubes, Springer, Cham, Switzerland (2014)

    Google Scholar 

  44. Y. Hancock, The 2010 Nobel Prize in physics—Ground-breaking experiments on graphene. J. Phys. D. Appl. Phys. 44(47), 473001 (2011)

    Article  CAS  Google Scholar 

  45. S.-Y. Yang et al., Symmetry demanded topological nodal-line materials. Adv. Phys. X 3(1), 1414631 (2018)

    Google Scholar 

  46. V.N. Kotov et al., Electron-electron interactions in graphene: Current status and perspectives. Rev. Mod. Phys. 84(3), 1067 (2012)

    Article  CAS  Google Scholar 

  47. Jo, Insun. "Experimental Investigation of Thermal Transport in Graphene and Hexagonal Boron Nitride." Ph.D. Thesis, The University of Texas at Austin (2012)

    Google Scholar 

  48. F. Zhao et al., Stimuli-deformable graphene materials: From nanosheet to macroscopic assembly. Mater. Today 19(3), 146–156 (2016)

    Article  CAS  Google Scholar 

  49. S.A. Bhuyan et al., A review of functionalized graphene properties and its application. Int. J. Innov. Sci. Res. 17(2), 303–315 (2015)

    Google Scholar 

  50. D. Jariwala, A. Srivastava, P.M. Ajayan, Graphene synthesis and band gap opening. J. Nanosci. Nanotechnol. 11(8), 6621–6641 (2011)

    Article  CAS  Google Scholar 

  51. C. Harito et al., Polymer nanocomposites having a high filler content: Synthesis, structures, properties, and applications. Nanoscale 11(11), 4653–4682 (2019)

    Article  CAS  Google Scholar 

  52. N. Kumar et al., Simple route for synthesis of multilayer graphene nanoballs by flame combustion of edible oil. Graphene 1(1), 63–67 (2013)

    Article  Google Scholar 

  53. E. Busseron et al., Supramolecular self-assemblies as functional nanomaterials. Nanoscale 5(16), 7098–7140 (2013)

    Article  CAS  Google Scholar 

  54. K. Okamoto et al., Self-assembly of optical molecules with supramolecular concepts. Int. J. Mol. Sci. 10(5), 1950–1966 (2009)

    Article  CAS  Google Scholar 

  55. X.M. Wen et al., Constructing novel fibre reinforced plastic (FRP) composites through a biomimetic approach: Connecting glass fibre with nanosized boron nitride by polydopamine coating. J. Nanomater. 2013, 155 (2013)

    Google Scholar 

  56. V. Dhand et al., A comprehensive review of graphene nanocomposites: Research status and trends. J. Nanomater. 2013, 158 (2013)

    Article  CAS  Google Scholar 

  57. K. Müller et al., Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nano 7(4), 74 (2017)

    Google Scholar 

  58. P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)

    Article  CAS  Google Scholar 

  59. I.-Y. Jeon, Jong-BeomBaek, Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3(6), 3654–3674 (2010)

    Article  CAS  Google Scholar 

  60. T. Hanemann, D.V. Szabó, Polymer-nanoparticle composites: From synthesis to modern applications. Materials 3(6), 3468–3517 (2010)

    Article  CAS  Google Scholar 

  61. E.L. Dreizin, Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35(2), 141–167 (2009)

    Article  CAS  Google Scholar 

  62. Ghanta, Sekher Reddy, and Krishnamurthi Muralidharan. "Chemical synthesis of aluminum nanoparticles." J. Nanopart. Res. 15.6 (2013): 1715

    Google Scholar 

  63. P. Feng, W. Cao, Properties, application and synthesis methods of Nano-molybdenum powder. J. Mater. Sci. Chem. Eng. 4(09), 36 (2016)

    CAS  Google Scholar 

  64. P. Tian et al., Graphene quantum dots from chemistry to applications. Mater. Today Chem. 10, 221–258 (2018)

    Article  CAS  Google Scholar 

  65. I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. (2017)

    Google Scholar 

  66. P.A. Ajibade, J.Z. Mbese, Synthesis and characterization of metal sulfides nanoparticles/poly (methyl methacrylate) nanocomposites. Int. J. Polym. Sci. 2014, 1 (2014)

    Article  CAS  Google Scholar 

  67. S. Tamboli et al., Energy transfer from Pr3+ to Gd3+ ions in BaB8O13 phosphor for phototherapy lamps. Phys. B Condens. Matter 535, 232–236 (2018)

    Article  CAS  Google Scholar 

  68. Y. Wang, A. Hu, Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2(34), 6921–6939 (2014)

    Article  CAS  Google Scholar 

  69. A. Ali et al., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49 (2016)

    Article  CAS  Google Scholar 

  70. K. Manzoor, V. Aditya, S.R. Vadera, N. Kumar, T.R.N. Kutty, Spntaneous organization of ZnS nanoparticles into monocrystalline nanorods with highly enhanced dopant related emission. J. Phys. Chem. Solids 66, 1164–1170 (2005)

    Article  CAS  Google Scholar 

  71. The global market for aluminium oxide nanoparticles, Future Markets, Inc. Technology Report No. 76

    Google Scholar 

  72. Y.K. Park et al., Size-controlled synthesis of alumina nanoparticles from aluminumalkoxides. Mater. Res. Bull. 40(9), 1506–1512 (2005)

    Article  CAS  Google Scholar 

  73. C. Xu et al., Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chem. Commun. 51(31), 6698–6713 (2015)

    Article  CAS  Google Scholar 

  74. G. Kandasamy, D. Maity, Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496(2), 191–218 (2015)

    Article  CAS  Google Scholar 

  75. M. Mascolo, Y. Pei, T. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6(12), 5549–5567 (2013)

    Article  CAS  Google Scholar 

  76. Majidi, Sima, et al. "Current methods for synthesis of magnetic nanoparticles." Artif. Cells Nanomed. Biotechnol. 44.2 (2016): 722–734

    Google Scholar 

  77. R. Mahmud, F. Nabi, Application of nanotechnology in the field of textile. IOSR J. Polym. Text. Eng. 4(1), 2181–2348p (2017)

    Google Scholar 

  78. J. Zhang, et al., Studies on Nanosecond 532nm and 355nm and Ultrafast 515nm and 532nm Laser Cutting Super-Hard Materials, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXII. Vol. 10091, International Society for Optics and Photonics, 2017

    Google Scholar 

  79. M. Islam, R. Martinez-Duarte, A sustainable approach for tungsten carbide synthesis using renewable biopolymers. Ceram. Int. 43(13), 10546–10553 (2017)

    Article  CAS  Google Scholar 

  80. K.M. Reddy et al., Nanostructured tungsten carbides by thermochemical processing. J. Alloys Compd. 494(1–2), 404–409 (2010)

    Article  CAS  Google Scholar 

  81. T. Xing et al., Ball milling: A green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale 5(17), 7970–7976 (2013)

    Article  CAS  Google Scholar 

  82. N. Saifuddin, A.Z. Raziah, A.R. Junizah, Carbon nanotubes: A review on structure and their interaction with proteins. J. Chem. 2012 (2013)

    Google Scholar 

  83. Y.I. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)

    Article  CAS  Google Scholar 

  84. A.Gil. Villalba, Single Shot Ablation of Monolayer Graphene by Spatially Shaped Femtosecond Laser Pulses. Diss. Université Bourgogne Franche-Comté, 2017

    Google Scholar 

  85. M. Cai et al., Methods of graphite exfoliation. J. Mater. Chem. 22(48), 24992–25002 (2012)

    Article  CAS  Google Scholar 

  86. K.A.I. Yan et al., Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 46(10), 2263–2274 (2013)

    Article  CAS  Google Scholar 

  87. H.C. Lee et al., Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 7(26), 15644–15693 (2017)

    Article  CAS  Google Scholar 

  88. R.K. Singh, R. Kumar, D.P. Singh, Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 6(69), 64993–65011 (2016)

    Article  CAS  Google Scholar 

  89. J. Chen et al., An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)

    Article  CAS  Google Scholar 

  90. D.R. Dreyer et al., The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)

    Article  CAS  Google Scholar 

  91. V. Rajendran, K. Saminathan, K.E. Geckeler, Advanced Nanomaterials: Synthesis and Applications, BLOOMSBURY, 2015

    Google Scholar 

  92. C.E. Harris, J.H. Starnes, M.J. Shuart, Design and manufacturing of aerospace composite structures, state-of-the-art assessment. J. Aircr. 39(4), 545–560 (2002)

    Article  Google Scholar 

  93. J. Pal, T. Pal, Faceted metal and metal oxide nanoparticles: Design, fabrication and catalysis. Nanoscale 7(34), 14159–14190 (2015)

    Article  CAS  Google Scholar 

  94. R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B: Biointerfaces 79(1), 5–18 (2010)

    Article  CAS  Google Scholar 

  95. M. A. Carpenter, S. Mathur, A. Kolmakov (eds.), Metal oxide nanomaterials for chemical sensors (Springer Science & Business Media, USA, 2012)

    Google Scholar 

  96. S. Peng et al., Multi-functional electrospunnanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev. 45(5), 1225–1241 (2016)

    Article  CAS  Google Scholar 

  97. G. Wang, Nanotechnology: The new features, arXiv preprint arXiv. 1812.04939 (2018)

    Google Scholar 

  98. R.T. Vang et al., Scanning tunneling microscopy as a tool to study catalytically relevant model systems. Chem. Soc. Rev. 37(10), 2191–2203 (2008)

    Article  CAS  Google Scholar 

  99. R.J.B. Balaguru, B.G. Jeyaprakash, Quantum size effect, electrical conductivity and quantum transport, NPTEL, India (2013)

    Google Scholar 

  100. M.A. García, Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D. Appl. Phys. 44(28), 283001 (2011)

    Article  CAS  Google Scholar 

  101. S.A.M. Rahman, et al., Localized surface plasmon resonance in bimetallic core-shell nanoparticles. Diss. BRAC University, 2016

    Google Scholar 

  102. S. Horikoshi, N. Serpone, Introduction to nanoparticles, Microwaves in Nanoparticle Synthesis: Fundamentals and Applications, (Wiley‐VCH Verlag, Germany 2013), pp. 1–24

    Google Scholar 

  103. X.L. Hu, O. Takai, N. Saito, Synthesis of gold nanoparticles by solution plasma sputtering in various solvents. Journal of Physics: Conference Series 417(1), 2030. IOP Publishing (2013)

    Google Scholar 

  104. D. Vollath, F.D. Fischer, D. Holec, Surface energy of nanoparticles–influence of particle size and structure. Beilstein J. Nanotechnol. 9(1), 2265–2276 (2018)

    Article  CAS  Google Scholar 

  105. M. Goyal, Shape, size and phonon scattering effect on the thermal conductivity of nanostructures. Pramana 91(6), 87 (2018)

    Article  CAS  Google Scholar 

  106. A. Kshirsagar, N. Kumbhojkar, Empirical pseudo-potential studies on electronic structure of semiconducting quantum dots. Bull. Mater. Sci. 31(3), 297–307 (2008)

    Article  CAS  Google Scholar 

  107. X.-F. Zhang et al., Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534 (2016)

    Article  CAS  Google Scholar 

  108. A. Useinov et al., Anomalous tunnel magnetoresistance and spin transfer torque in magnetic tunnel junctions with embedded nanoparticles. Sci. Rep. 5, 18026 (2015)

    Article  CAS  Google Scholar 

  109. D. Guo, G. Xie, J. Luo, Mechanical properties of nanoparticles: basics and applications. J. Phys. D Appl. Phys. 47(1), 013001 (2013)

    Article  CAS  Google Scholar 

  110. N. Kumar, S. Kumbhat, Chapter 6, in Concise concepts of nanoscience and nanomaterials, (Sceintific Publishers, Jodhpur, India, 2018)

    Google Scholar 

  111. A. Wei, Calixarene-encapsulated nanoparticles: Self-assembly into functional nanomaterials. Chem. Commun. (15), 1581–1591 (2006)

    Google Scholar 

  112. A.L. Butcher, G.S. Offeddu, M.L. Oyen, Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends Biotechnol. 32(11), 564–570 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N., Dixit, A. (2019). Nanotechnology: Science and Technology at New Length Scale with Implications in Defense. In: Nanotechnology for Defence Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-29880-7_2

Download citation

Publish with us

Policies and ethics