Skip to main content

Pathway Selection

  • Chapter
  • First Online:
Metabolic Pathway Design

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1016 Accesses

Abstract

Several biosynthetic routes are often discovered when screening for ways of connecting the chemical target to the chassis organism through retrosynthesis. The number of alternative pathways can be very high. Pathway enumeration techniques allow determining the alternatives in a systematic way. In this chapter, we will introduce elementary flux mode analysis as one of the most successful approaches for pathway enumeration. Those enumerated pathways need to be ranked in order to select best candidate pathways to engineer. Pathway selection is a multiobjective optimization problem. Different criteria can be used for pathway selection, among others we will discuss here main factors due to enzyme performance, production capabilities and intermediate metabolite toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    7 https://github.com/brsynth/rp2paths

  2. 2.

    7 https://absynth.issb.genopole.fr/Bioinformatics/

References

  1. Carbonell, P., Wong, J., Swainston, N., Takano, E., Turner, N.J., Scrutton, N.S., Kell, D.B., Breitling, R., Faulon, J.L.: Selenzyme: enzyme selection tool for pathway design. Bioinformatics 34(12), 2153–2154 (2018). https://doi.org/10.1093/bioinformatics/bty065

    Article  Google Scholar 

  2. Choi, K., Medley, J.K., König, M., Stocking, K., Smith, L., Gu, S., Sauro, H.M.: Tellurium: an extensible python-based modeling environment for systems and synthetic biology. Biosystems 171, 74–79 (2018). https://doi.org/10.1016/j.biosystems.2018.07.006

    Article  CAS  Google Scholar 

  3. Ebrahim, A., Lerman, J.A.J., Palsson, B.O., Hyduke, D.R.: COBRApy: COnstraints-based reconstruction and analysis for python. BMC Syst. Biol. 7(1), 74 (2013). https://doi.org/10.1186/1752-0509-7-74

    Article  Google Scholar 

  4. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASIa COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006). https://doi.org/10.1093/bioinformatics/btl485

    CAS  PubMed  Google Scholar 

  5. Planson, A.G.A.G., Carbonell, P., Paillard, E., Pollet, N., Faulon, J.L.: Compound toxicity screening and structure-activity relationship modeling in Escherichia coli. Biotechnol. Bioeng. 109(3), 846–850 (2012). https://doi.org/10.1002/bit.24356

    Article  CAS  Google Scholar 

  6. Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24(19), 2229–2235 (2008). https://doi.org/10.1093/bioinformatics/btn401

    Article  CAS  Google Scholar 

  7. Zanghellini, J., Ruckerbauer, D.E., Hanscho, M., Jungreuthmayer, C.: Elementary flux modes in a nutshell: properties, calculation and applications. Biotechnology J. 8(9), 1009–1016 (2013). https://doi.org/10.1002/biot.201200269

    Article  CAS  Google Scholar 

Further Reading

  • Hypergraph techniques for metabolic pathway enumeration:

    Google Scholar 

  • Carbonell, P., Fichera, D., Pandit, S., Faulon, J.L.: Enumerating metabolic pathways for the production of heterologous target chemicals in chassis organisms. BMC Syst. Biol. 6(1), 10 (2012). https://doi.org/10.1186/1752-0509-6-10

    Article  Google Scholar 

  • Liu, F., Vilaa, P., Rocha, I., Rocha, M.: Development and application of efficient pathway enumeration algorithms for metabolic engineering applications. Comput. Methods Prog. Biomed. (2014). https://doi.org/10.1016/j.cmpb.2014.11.010

    Google Scholar 

  • An early discussion about pathway ranking:

    Google Scholar 

  • Carbonell, P., Planson, A.G., Fichera, D., Faulon, J.L.: A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst. Biol. 5(1), 122 (2011). https://doi.org/10.1186/1752-0509-5-122

    Article  Google Scholar 

  • A proof-of-concept of the application of different approaches to pathway selection and ranking appeared in the report of a recent pressure test for synthetic biology biofoundries:

    Google Scholar 

  • Casini, A., Chang, F.Y., Eluere, R., King, A.M., Young, E.M., Dudley, Q.M., Karim, A., Pratt, K., Bristol, C., Forget, A., Ghodasara, A., Warden-Rothman, R., Gan, R., Cristofaro, A., Borujeni, A.E., Ryu, M.H., Li, J., Kwon, Y.C., Wang, H., Tatsis, E., Rodriguez-Lopez, C., O’Connor, S., Medema, M.H., Fischbach, M.A., Jewett, M.C., Voigt, C., Gordon, D.B.: A pressure test to make 10 molecules in 90 days: external evaluation of methods to engineer biology. J. Am. Chem. Soc. 140(12), 4302–4316 (2018). https://doi.org/10.1021/jacs.7b13292

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carbonell, P. (2019). Pathway Selection. In: Metabolic Pathway Design. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-29865-4_7

Download citation

Publish with us

Policies and ethics