Skip to main content

Pathway Discovery

  • Chapter
  • First Online:
Metabolic Pathway Design

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1066 Accesses

Abstract

Pathway discovery is a prospective task that is part of the metabolic pathway design workflow. Using the tools that were described in previous chapters to model metabolic networks and chemical diversity, we can now start exploring the metabolic space for routes leading to the production of promising targets. Chemical targets of interest can be identified by performing techno-economic and life cycle analyses. A bioretrosynthesis analysis assesses the existence and feasibility of biosynthetic pathways connecting the target to the chassis. Generalized reaction rules in the bioretrosynthesis analysis can be applied in order to predict de novo or hypothetical routes based on enzyme promiscuity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    7 https://wwww.ebi.ac.uk

  2. 2.

    7 https://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=CHEBI:22586

  3. 3.

    7 https://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=CHEBI:35610

  4. 4.

    7 https://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=CHEBI:63726

  5. 5.

    Verified at 7 https://www.aldrichmarketselect.com/

  6. 6.

    LCA is one of the requirements in the International standard ISO 14001:2015

  7. 7.

    7 https://metacyc.org/compound?orgid=META&id=CPD-6991

  8. 8.

    7 https://www.reaxys.com/

  9. 9.

    7 http://chematica.net/

  10. 10.

    7 https://www.knime.com

  11. 11.

    7 https://www.myexperiment.org/workflows/4987.html

  12. 12.

    7 https://www.metanetx.org/

  13. 13.

    7 https://www.metacyc.org/

  14. 14.

    7 http://bigg.ucsd.edu/models/iJO1366

  15. 15.

    7 https://retrorules.org/

  16. 16.

    7 https://www.nrel.gov/docs/fy04osti/35523.pdf

References

  1. Delépine, B., Duigou, T., Carbonell, P., Faulon, J.L.: RetroPath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45, 158–170 (2018). https://doi.org/10.1016/j.ymben.2017.12.002

    Article  Google Scholar 

  2. Duigou, T., du Lac, M., Carbonell, P., Faulon, J.L.: RetroRules: a database of reaction rules for engineering biology. Nucl. Acids Res. (2018). https://doi.org/10.1093/nar/gky940

    Google Scholar 

  3. Feng, F., Lai, L., Pei, J.: Computational chemical synthesis analysis and pathway design. Front. Chem. 6, 199 (2018). https://doi.org/10.3389/fchem.2018.00199

    Article  Google Scholar 

  4. Fillbrunn, A., Dietz, C., Pfeuffer, J., Rahn, R., Landrum, G.A., Berthold, M.R.: KNIME for reproducible cross-domain analysis of life science data. J. Biotechnol. (2017). https://doi.org/10.1016/j.jbiotec.2017.07.028

    Article  CAS  Google Scholar 

  5. Hastings, J., Owen, G., Dekker, A., Ennis, M., Kale, N., Muthukrishnan, V., Turner, S., Swainston, N., Mendes, P., Steinbeck, C.: ChEBI in 2016: improved services and an expanding collection of metabolites. Nucl. Acids Res. 44(D1), D1214–D1219 (2016). https://doi.org/10.1093/nar/gkv1031

    Article  CAS  Google Scholar 

  6. Lipinski, C.A.: Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1(4), 337–341 (2004). https://doi.org/10.1016/J.DDTEC.2004.11.007; https://www.sciencedirect.com/science/article/pii/S1740674904000551?via%3Dihub

    Article  CAS  Google Scholar 

  7. Notebaart, R.A., Kintses, B., Feist, A.M., Papp, B.: Underground metabolism: network-level perspective and biotechnological potential. Curr. Opin. Biotechnol. 49, 108–114 (2017)

    Article  Google Scholar 

  8. Orth, J.D., Conrad, T.M., Na, J., Lerman, J.A., Nam, H., Feist, A.M., Palsson, B.O.: A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol. Syst. Biol. 7, 53 (2011). https://doi.org/10.1038/msb.2011.65

    Article  Google Scholar 

Further Reading

  • A framework for chemical target selection:

    Google Scholar 

  • Campodonico, M.A., Sukumara, S., Feist, A.M., HerrgÃ¥rd, M.J.: Computational methods to assess the production potential of bio-based chemicals. In: Methods in molecular biology (Clifton, NJ), vol. 1671, pp. 97–116 (2018)

    Google Scholar 

  • A more generic discussion about economic considerations for bioprocess commercialization:

    Google Scholar 

  • Wynn, J.P., Hanchar, R., Kleff, S., Senyk, D., Tiedje, T.: Biobased technology commercialization: the importance of lab to pilot scale-up. In: Metabolic Engineering for Bioprocess Commercialization, pp. 101–119. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  • A discussion about biocatalytic retrosynthesis:

    Google Scholar 

  • Green, A.P., Turner, N.J.: Biocatalytic retrosynthesis: redesigning synthetic routes to high-value chemicals. Perspect. Sci. 9, 42–48 (2016). https://doi.org/10.1016/j.pisc.2016.04.106

    Article  Google Scholar 

  • A review about pathway design tools:

    Google Scholar 

  • Wang, L., Dash, S., Ng, C.Y., Maranas, C.D.: A review of computational tools for design and reconstruction of metabolic pathways. Synth. Syst. Biol. 2(4), 243–252 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carbonell, P. (2019). Pathway Discovery. In: Metabolic Pathway Design. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-29865-4_6

Download citation

Publish with us

Policies and ethics