Skip to main content

Modeling Chemical Diversity

  • Chapter
  • First Online:
Book cover Metabolic Pathway Design

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1010 Accesses

Abstract

In this chapter, you will learn about ways for modeling the chemical diversity found in metabolic pathways in nature. Organisms have evolved enzymes, i.e., specialized proteins to carry out chemical transformations that produce the compounds required for life. We have nowadays a good understanding about the mechanisms of natural evolution that allowed the creation of new enzymes and new activities. We are going to model and simulate such behavior by encoding reactions in the same way as we encode a language using words. This will allow us to understand the grammar behind the generation of new reactions. Even more interestingly, we will see how the grammar can be potentially used to enumerate any possible reaction and any possible compound that can be produced in nature. At the end of this chapter, we should have gained a good understanding of the biochemical space that exists in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    7 http://www.daylight.com/

  2. 2.

    I invite the reader to learn in detail the rules about SMARTS to understand the big possibilities of using this common representation for chemical transformations.

  3. 3.

    7 http://www.hmdb.ca

References

  1. Carbonell, P., Planson, A.G., Fichera, D., Faulon, J.L.: A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst. Biol. 5(1), 122 (2011). https://doi.org/10.1186/1752-0509-5-122

    Article  Google Scholar 

  2. Caspi, R., Altman, T., Dreher, K., Fulcher, C.A., Subhraveti, P., Keseler, I.M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L.A., Ong, Q., Paley, S., Pujar, A., Shearer, A.G., Travers, M., Weerasinghe, D., Zhang, P., Karp, P.D.: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 40(D1), D742–D753 (2012). https://doi.org/10.1093/nar/gkr1014

    Article  CAS  Google Scholar 

  3. Fillbrunn, A., Dietz, C., Pfeuffer, J., Rahn, R., Landrum, G.A., Berthold, M.R.: KNIME for reproducible cross-domain analysis of life science data. J. Biotechnol. (2017). https://doi.org/10.1016/j.jbiotec.2017.07.028

    Article  CAS  Google Scholar 

  4. Judson, P.: Knowledge-Based Expert Systems in Chemistry. Theoretical and Computational Chemistry Series. Royal Society of Chemistry, Cambridge (2009). https://doi.org/10.1039/9781847559807

    Google Scholar 

  5. Khersonsky, O., Tawfik, D.S.: Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79(1), 471–505 (2010). https://doi.org/10.1146/annurev-biochem-030409-143718

    Article  CAS  Google Scholar 

  6. Notebaart, R.A., Kintses, B., Feist, A.M., Papp, B.: Underground metabolism: network-level perspective and biotechnological potential. Curr. Opin. Biotechnol. 49, 108–114 (2017)

    Article  Google Scholar 

  7. Rahman, S.A., Cuesta, S.M., Furnham, N., Holliday, G.L., Thornton, J.M.: EC-BLAST: a tool to automatically search and compare enzyme reactions. Nat. Methods 11(2), 171–174 (2014). https://doi.org/10.1038/nmeth.2803

    Article  CAS  Google Scholar 

  8. Rahman, S.A., Torrance, G., Baldacci, L., Martínez Cuesta, S., Fenninger, F., Gopal, N., Choudhary, S., May, J.W., Holliday, G.L., Steinbeck, C., Thornton, J.M.: Reaction Decoder Tool (RDT): extracting features from chemical reactions. Bioinformatics 32(13), 2065–2066 (2016). https://doi.org/10.1093/bioinformatics/btw096

    Article  Google Scholar 

  9. Willighagen, E.L., Mayfield, J.W., Alvarsson, J., Berg, A., Carlsson, L., Jeliazkova, N., Kuhn, S., Pluskal, T., Rojas-Chertó, M., Spjuth, O., Torrance, G., Evelo, C.T., Guha, R., Steinbeck, C.: The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J. Cheminformatics 9(1), 33 (2017). https://doi.org/10.1186/s13321-017-0220-4

Further Reading

  • A good introduction to biocatalysis:

    Google Scholar 

  • Grunwald, P.: Biocatalysis. Biochemical Fundamentals and Applications. Imperial College Press (2009)

    Book  Google Scholar 

  • An interesting discussion on enzyme promiscuity and evolution:

    Google Scholar 

  • Khersonsky, O., Tawfik, D.S.: Enzyme promiscuity: a mechanistic and evolutionary perspective. Ann. Rev. Biochem. 79(1), 471–505 (2010)

    Article  CAS  Google Scholar 

  • Useful introductions to chemoinformatics and associated algorithms can be found in:

    Google Scholar 

  • Judson, P.: Knowledge-Based Expert Systems in Chemistry. Theoretical and Computational Chemistry Series. Royal Society of Chemistry, Cambridge (2009)

    Google Scholar 

  • Gasteiger, J., Engel, T. (eds.): Chemoinformatics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG (2003)

    Google Scholar 

  • Faulon, J.L., Bender, A.: Handbook of Chemoinformatics Algorithms. Chapman & Hall/CRC (2010)

    Google Scholar 

  • More details about the implementation of chemoinformatics algorithms are available at the sites for the software packages:

    Google Scholar 

  • The RDKit Python library: http://rdkit.org

  • The CDK [9] Java library: https://cdk.github.io/

  • An insightful discussion about chemical space enumeration:

    Google Scholar 

  • Reymond, J.L., Ruddigkeit, L., Blum, L., van Deursen, R.: The enumeration of chemical space. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2(5), 717–733 (2012)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carbonell, P. (2019). Modeling Chemical Diversity. In: Metabolic Pathway Design. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-29865-4_4

Download citation

Publish with us

Policies and ethics