Skip to main content

A Nonstandard Solution of the Fermionic Mass Hierarchy

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 234))

Abstract

We present a non-conventional solution of the fermionic mass hierarchy among and within the three fermionic families of the standard model and quark mixing using discrete abelian \(\mathcal {Z}_2\) symmetries and gauge singlet scalar fields. An ultraviolet completion with vector-like fermions is also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Consonant letter “” (kə) is taken from the Devanagari script. It is pronounced as “Ka” in Kashmir [1].

References

  1. G. Abbas, Int. J. Mod. Phys. A 34(20), 1950104 (2019). https://doi.org/10.1142/S0217751X19501045

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Abbas, arXiv:1710.03582 [hep-ph]

  3. G. Abbas, arXiv:1807.05683 [hep-ph]d

  4. C.D. Froggatt, H.B. Nielsen, Nucl. Phys. B 147, 277 (1979). https://doi.org/10.1016/0550-3213(79)90316-X

    Article  ADS  Google Scholar 

  5. B.S. Balakrishna, Phys. Rev. Lett. 60, 1602 (1988). https://doi.org/10.1103/PhysRevLett.60.1602

    Article  ADS  Google Scholar 

  6. M. Cvetic, Phys. Rev. D 32, 1214 (1985). https://doi.org/10.1103/PhysRevD.32.1214

    Article  ADS  Google Scholar 

  7. A. Davidson, L. Michel, M.L. Sage, K.C. Wali, Phys. Rev. D 49, 1378 (1994). https://doi.org/10.1103/PhysRevD.49.1378

    Article  ADS  Google Scholar 

  8. M. Leurer, Y. Nir, N. Seiberg, Nucl. Phys. B 420, 468 (1994). https://doi.org/10.1016/0550-3213(94),90074-4[hep-ph/9310320]

    Article  ADS  Google Scholar 

  9. N. Haba, T. Kondo, Y. Shimizu, Phys. Lett. B 535, 271 (2002). https://doi.org/10.1016/S0370-2693(02)01774-4 [hep-ph/0202191]

    Article  ADS  Google Scholar 

  10. K.S. Babu, S. Nandi, Phys. Rev. D 62, 033002 (2000). https://doi.org/10.1103/PhysRevD.62.033002 [hep-ph/9907213]

  11. G.G. Ross, L. Velasco-Sevilla, Nucl. Phys. B 653, 3 (2003). https://doi.org/10.1016/S0550-3213(03)00041-5 [hep-ph/0208218]

    Article  ADS  Google Scholar 

  12. G.F. Giudice, O. Lebedev, Phys. Lett. B 665, 79 (2008). https://doi.org/10.1016/j.physletb.2008.05.062 [arXiv:0804.1753 [hep-ph]]

    Article  ADS  Google Scholar 

  13. F. Bazzocchi, S. Morisi, M. Picariello, E. Torrente-Lujan, J. Phys. G 36, 015002 (2009). https://doi.org/10.1088/0954-3899/36/1/015002. arXiv:0802.1693 [hep-ph]

    Article  ADS  Google Scholar 

  14. S.F. King, JHEP 1401, 119 (2014). https://doi.org/10.1007/JHEP01(2014)119. arXiv:1311.3295 [hep-ph]

  15. H. Ishimori, S.F. King, H. Okada, M. Tanimoto, Phys. Lett. B 743, 172 (2015). https://doi.org/10.1016/j.physletb.2015.02.027. arXiv:1411.5845 [hep-ph]

    Article  ADS  Google Scholar 

  16. F. Hartmann, W. Kilian, Eur. Phys. J. C 74, 3055 (2014). https://doi.org/10.1140/epjc/s10052-014-3055-4. arXiv:1405.1901 [hep-ph]

  17. C.E. Daz, S.F. Mantilla, R. Martinez, arXiv:1712.07263 [hep-ph]

  18. H. Fritzsch, Phys. Lett. 73B, 317 (1978). https://doi.org/10.1016/0370-2693(78)90524-5

    Article  ADS  Google Scholar 

  19. S.M. Barr, Phys. Rev. D 21, 1424 (1980). https://doi.org/10.1103/PhysRevD.21.1424

    Article  ADS  Google Scholar 

  20. Y. Koide, Phys. Rev. D 28, 252 (1983). https://doi.org/10.1103/PhysRevD.28.252

    Article  ADS  Google Scholar 

  21. N. Arkani-Hamed, M. Schmaltz, Phys. Rev. D 61, 033005 (2000). https://doi.org/10.1103/PhysRevD.61.033005 [hep-ph/9903417]

  22. K. Yoshioka, Mod. Phys. Lett. A 15, 29 (2000). https://doi.org/10.1142/S0217732300000062,10.1016/S0217-7323(00)00006-2 [hep-ph/9904433]

  23. E.A. Mirabelli, M. Schmaltz, Phys. Rev. D 61, 113011 (2000). https://doi.org/10.1103/PhysRevD.61.113011 [hep-ph/9912265]

  24. K.S. Babu, E. Ma, J.W.F. Valle, Phys. Lett. B 552, 207 (2003). https://doi.org/10.1016/S0370-2693(02)03153-2 [hep-ph/0206292]

    Article  ADS  Google Scholar 

  25. H. Georgi, A.E. Nelson, A. Manohar, Phys. Lett. 126B, 169 (1983). https://doi.org/10.1016/0370-2693(83)90584-1

    Article  ADS  Google Scholar 

  26. B.S. Balakrishna, A.L. Kagan, R.N. Mohapatra, Phys. Lett. B 205, 345 (1988). https://doi.org/10.1016/0370-2693(88)91676-0

    Article  ADS  Google Scholar 

  27. K.S. Babu, R.N. Mohapatra, Phys. Rev. Lett. 64, 2747 (1990). https://doi.org/10.1103/PhysRevLett.64.2747

    Article  ADS  Google Scholar 

  28. Z.G. Berezhiani, R. Rattazzi, Nucl. Phys. B 407, 249 (1993). https://doi.org/10.1016/0550-3213(93)90057-V [hep-ph/9212245]

    Article  ADS  Google Scholar 

  29. J.K. Elwood, N. Irges, P. Ramond, Phys. Lett. B 413, 322 (1997). https://doi.org/10.1016/S0370-2693(97)01103-9 [hep-ph/9705270]

    Article  ADS  MathSciNet  Google Scholar 

  30. J.R. Ellis, S. Lola, G.G. Ross, Nucl. Phys. B 526, 115 (1998). https://doi.org/10.1016/S0550-3213(98)00423-4 [hep-ph/9803308]

    Article  ADS  Google Scholar 

  31. R. Barbieri, L.J. Hall, A. Romanino, Nucl. Phys. B 551, 93 (1999) https://doi.org/10.1016/S0550-3213(99)00215-1 [hep-ph/9812384]

    Article  ADS  Google Scholar 

  32. I. Dorsner, S.M. Barr, Phys. Rev. D 65, 095004 (2002). https://doi.org/10.1103/PhysRevD.65.095004[hep-ph/0201207]

  33. M. Bauer, M. Carena, K. Gemmler, JHEP 1511, 016 (2015). 10.1007/JHEP11(2015)016. arXiv:1506.01719 [hep-ph]

  34. R.S. Hundi, S. SenGupta, J. Phys. G 40, 075002 (2013). https://doi.org/10.1088/0954-3899/40/7/075002. arXiv:1111.1106 [hep-th]

    Article  ADS  Google Scholar 

  35. J.B. Dent, R. Feger, T.W. Kephart, S. Nandi, Phys. Lett. B 697, 367 (2011). https://doi.org/10.1016/j.physletb.2011.02.028. arXiv:0908.3915 [hep-ph]

    Article  ADS  Google Scholar 

  36. M. Bauer, M. Carena, K. Gemmler, Phys. Rev. D 94(11), 115030 (2016). https://doi.org/10.1103/PhysRevD.94.115030. arXiv:1512.03458 [hep-ph]

  37. K. Huitu, N. Koivunen, arXiv:1706.09463 [hep-ph]

  38. F.J. Botella, G.C. Branco, M.N. Rebelo, J.I. Silva-Marcos, Phys. Rev. D 94(11), 115031 (2016). https://doi.org/10.1103/PhysRevD.94.115031. arXiv:1602.08011 [hep-ph]

  39. M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, Phys. Lett. B 779, 317 (2018). https://doi.org/10.1016/j.physletb.2018.02.011. arXiv:1712.01368 [hep-ph]

    Article  ADS  Google Scholar 

  40. G. Abbas, Phys. Rev. D 95(1), 015029 (2017). https://doi.org/10.1103/PhysRevD.95.015029. arXiv:1609.02899 [hep-ph]

  41. G. Abbas, arXiv:1706.01052 [hep-ph]

  42. G. Abbas, Phys. Lett. B 773, 252 (2017). https://doi.org/10.1016/j.physletb.2017.08.028. arXiv:1706.02564 [hep-ph]

    Article  ADS  Google Scholar 

  43. D.B. Kaplan, H. Georgi, Phys. Lett. 136B, 183 (1984). https://doi.org/10.1016/0370-2693(84)91177-8

    Article  ADS  Google Scholar 

  44. D.B. Kaplan, H. Georgi, S. Dimopoulos, Phys. Lett. 136B, 187 (1984). https://doi.org/10.1016/0370-2693(84)91178-X

    Article  ADS  Google Scholar 

  45. K. Agashe, R. Contino, A. Pomarol, Nucl. Phys. B 719, 165 (2005). https://doi.org/10.1016/j.nuclphysb.2005.04.035[hep-ph/0412089]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gauhar Abbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbas, G. (2019). A Nonstandard Solution of the Fermionic Mass Hierarchy. In: Giri, A., Mohanta, R. (eds) 16th Conference on Flavor Physics and CP Violation. FPCP 2018. Springer Proceedings in Physics, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-030-29622-3_61

Download citation

Publish with us

Policies and ethics