Skip to main content

Higher invariants in noncommutative geometry

  • Chapter
  • First Online:

Abstract

We give a survey on higher invariants in noncommutative geometry and their applications to differential geometry and topology.

Dedicated to Alain Connes with great admiration

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In other words, there is no need to pass to the operator \(\mathcal {F}\) or \(\mathcal {F}(t)\) as in the general case.

  2. 2.

    Note that in this case, all finite order elements in come from Γ.

  3. 3.

    Proposition 6.14 first appeared in [WY]. The original statement in [WY] seems to contain a minor error when d is even, the version we state in this survey and its proof can be found in [XYZ].

  4. 4.

    Without loss of generality, we can assume N R(Z) is Γ-invariant.

  5. 5.

    A geometric construction of the Siebenmann periodicity map was given by Cappell and Weinberger [CW].

  6. 6.

    Let us review how the homomorphism \(\psi _\ast : K_{1}(C_{L,0}^\ast (\widetilde M)^\Gamma )\to K_{1}(C_{L,0}^\ast (\widetilde M)^\Gamma )\) is defined. The map ψ: M → M lifts to a map \(\widetilde \psi \colon \widetilde M \to \widetilde M\). However, to view \(\widetilde \psi \) as a Γ-equivariant map, we need to use two different actions of Γ on \(\widetilde M\). Let τ be a right action of Γ on \(\widetilde M\) through deck transformations. Then we define a new action τ′ of Γ on \(\widetilde M\) by \(\tau ^{\prime }_g = \tau _{\psi _\ast (g)}\), where ψ :  Γ → Γ is the automorphism induced by ψ. It is easy to see that \(\widetilde \psi \colon \widetilde M \to \widetilde M\) is Γ-equivariant, when Γ acts on the first copy of \(\widetilde M\) by τ and the second copy of \(\widetilde M\) by τ′. Let us denote the corresponding C -algebras by \(C_{L,0}^\ast (\widetilde M)_{\tau }^\Gamma \) and \(C_{L,0}^\ast (\widetilde M)_{\tau '}^\Gamma \). Observe that, despite the two different actions of Γ on \(\widetilde M\), the two C -algebras \(C_{L,0}^\ast (\widetilde M)_{\tau }^\Gamma \) and \( C_{L,0}^\ast (\widetilde M)_{\tau '}^\Gamma \) are canonically identical, since an operator is invariant under the action τ if and only if it is invariant under the action τ′.

  7. 7.

    Precisely speaking, φ only defines an outer automorphism of Γ, and one needs to make a specific choice of a representative in Aut( Γ). In any case, any such choice will work for the proof.

  8. 8.

    The C -algebra \(C_{L,0}^\ast (E\Gamma )^\Gamma \) is the inductive limit of \(C_{L,0}^\ast (Y)^\Gamma \), where Y  ranges over all Γ-cocompact subspaces of E Γ.

  9. 9.

    Here “invertible” means being invertible on the universal cover of the manifold.

  10. 10.

    We refer the reader to [CWXY] for details on how to identify the formula for \(\eta _{\varphi }(\widetilde D)\) in Theorem 10.7 with the periodic version of Lott’s noncommutative-differential higher eta invariant.

  11. 11.

    In fact, even more is true. One can use the same techniques developed in [CWXY] to show that if \(\mathcal A\) is smooth dense subalgebra of \(C_r^\ast (\Gamma )\) for any group Γ (not necessarily hyperbolic) and in addition \(\mathcal A\) is a Fréchet locally m-convex algebra, then there is a well-defined delocalized Connes–Chern character \(Ch_{deloc}\colon K_i(C^*_{L,0}(\widetilde M)^\Gamma )\to \overline {HC}^{deloc}_{\ast }(\mathcal A)\). Of course, in order to pair such a delocalized Connes–Chern character with a cyclic cocycle of \(\mathbb C\Gamma \), the key remaining challenge is to continuously extend this cyclic cocycle of \(\mathbb C\Gamma \) to a cyclic cocycle of \(\mathcal A\).

  12. 12.

    Here the definition of cyclic homology of \(\mathcal B\) takes the topology of \(\mathcal B\) into account, cf. [C2, Section II.5].

References

  1. P. Albin. Stratified surgery and K-theory invariants of the signature operator. https://arxiv.org/abs/1710.00934.

  2. P. Albin, É. Leichtnam, R. Mazzeo, P. Piazza. The signature package on Witt spaces. Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 2, 241–310.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Albin, E. Leichtnam, R. Mazzeo, P. Piazza. The Novikov conjecture on Cheeger spaces. J. Noncommut. Geom. 11 (2017), no. 2, 451–506.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Arzhantseva, T. Delzant. Examples of random groups. Preprint, 2008.

    Google Scholar 

  5. M. Atiyah. Global theory of elliptic operators. 1970 Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) pp. 21–30 Univ. of Tokyo Press, Tokyo.

    Google Scholar 

  6. M. Atiyah. Elliptic operators, discrete groups and von Neumann algebras. Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), pp. 43–72. Astérisque, No. 32–33, Soc. Math. France, Paris, 1976.

    Google Scholar 

  7. M. Atiyah, I. Singer. The index of elliptic operators. I. Ann. of Math. (2) 87 1968 484–530.

    Google Scholar 

  8. P. Antonini, S. Azzali, G. Skandalis. The Baum-Connes conjecture localised at the unit element of a discrete group. arXiv:1807.05892, 2018.

    Google Scholar 

  9. T. AustinRational group ring elements with kernels having irrational dimension. Proc. Lond. Math. Soc. (3), 107(6):1424–1448, 2013.

    Google Scholar 

  10. P. Baum, A. Connes. K-theory for discrete groups Operator algebras and applications, Vol. 1, volume 135 of London Mathematical Society, pages 1–20. Cambridge Univ. Press, Cambridge, 1988.

    Google Scholar 

  11. P. Baum, A. Connes, N. Higson. Classifying space for proper actions and K-theory of groupC -algebras. C-algebras: 1943–1993 (San Antonio, TX, 1993), 240–291, Contemp. Math., 167, Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  12. A. Bartels, W. Lück. The Borel Conjecture for hyperbolic and CAT(0)-groups. Ann. of Math. (2) 175 (2012), no. 2, 631–689.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Bartels, W. Lück, R. Holger. The K-theoretic Farrell-Jones conjecture for hyperbolic groups. Invent. Math. 172 (2008), no. 1, 29–70.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Bartels, D. Rosenthal. On theK-theory of groups with finite asymptotic dimension. J. Reine Angew. Math. 612 (2007), 35–57.

    Google Scholar 

  15. G. Bell, A. Dranishnikov. On asymptotic dimension of groups. Algebr. Geom. Topol. 1 (2001), 57–71 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Bell, A. Dranishnikov. A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory. Transactions American Math. Soc. Volume 358, Number 11, 2006, 4749–4764.

    Google Scholar 

  17. M. Bekka, P. Cherix, A. Valette. Proper affine isometric actions of amenable groups. Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), 1–4, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  18. M. Bestvina, K. Bromberg, K. Fujiwara. Constructing group actions on quasi-trees and applications to mapping class groups. Publ. Math. Inst. Hautes Études Sci. 122 (2015), 1–64.

    Google Scholar 

  19. M. Bestvina, V. Guirardel, C. Horbez. Boundary amenability of Out(F N). arXiv:1705.07017, 2017.

    Google Scholar 

  20. B. Botvinnik , P. B. Gilkey. The eta invariant and metrics of positive scalar curvature. Math. Ann., 302(3):507–517, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Brown, E. Guentner. Uniform embeddings of bounded geometry spaces into reflexive Banach space. Proc. Amer. Math. Soc. 133 (2005), no. 7, 2045–2050.

    Article  MathSciNet  MATH  Google Scholar 

  22. U. Bunke. A K-theoretic relative index theorem and Callias-type Dirac operators. Math. Ann., 303(2):241–279, 1995.

    Google Scholar 

  23. J. Block, S. Weinberger. Arithmetic manifolds of positive scalar curvature. J. Differential Geom. 52 (1999), no. 2, 375–406.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Block, S. Weinberger. Aperiodic tilings, positive scalar curvature and amenability of spaces. J. Amer. Math. Soc. 5 (1992), no. 4, 907–918.

    Google Scholar 

  25. S. Cappell, S. Weinberger. A geometric interpretation of Siebenmann’s periodicity phenomenon. In Geometry and topology (Athens, Ga., 1985), volume 105 of Lecture Notes in Pure and Appl. Math., pages 47–52. Dekker, New York, 1987.

    Google Scholar 

  26. G. Carlsson, B. Goldfarb. The integralK-theoretic Novikov conjecture for groups with finite asymptotic dimension. Invent. Math. 157 (2004), no. 2, 405–418.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Carlsson, E. Pedersen. Controlled algebra and the Novikov conjectures forK- andL-theory. Topology 34 (1995), no. 3, 731–758.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Chang, S. Ferry, G. Yu. Bounded rigidity of manifolds and asymptotic dimension growth. J. K-Theory 1 (2008), no. 1, 129–144.

    Google Scholar 

  29. S. Chang, S. Weinberger. On invariants of Hirzebruch and Cheeger-Gromov. Geom. Topol. 7 (2003), 311–319.

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Charlotte. Higher-invariants and the surgery structure set. J. Topol. 6.

    Google Scholar 

  31. X. Chen, J. Wang, Z. Xie, Yu. Delocalized eta invariants, cyclic cohomology and higher rho invariants. arXiv:1901.02378, 2019.

    Google Scholar 

  32. A. Connes. Noncommutative Geometry. Academic Press, 1994.

    Google Scholar 

  33. A. Connes. Cyclic cohomology and the transverse fundamental class of a foliation. Geometric methods in operator algebras (Kyoto, 1983), pages 52–144, volume 123, Pitman Res. Notes Math. Ser., 1986.

    Google Scholar 

  34. A. Connes. Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math., (62):257–360, 1985.

    Google Scholar 

  35. A. Connes. On the Chern character ofθsummable Fredholm modules. Comm. Math. Phys. 139 (1991), no. 1, 171–181.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Connes, N. Higson. Déformations, morphismes asymptotiques et K-théorie bivariante. (French) [Deformations, asymptotic morphisms and bivariant K-theory] C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 2, 101–106.

    Google Scholar 

  37. A. Connes, H. Moscovici. Cyclic cohomology, the Novikov conjecture and hyperbolic groups. Topology 29 (1990), no. 3, 345–388.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Connes, M. Gromov, H. Moscovici. Group cohomology with Lipschitz control and higher signatures. Geom. Funct. Anal. 3 (1993), no. 1, 1–78.

    Google Scholar 

  39. M. Davis. Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. of Math. (2) 117 (1983), no. 2, 293–324.

    Google Scholar 

  40. R. J. Deeley, M. Goffeng. Realizing the analytic surgery group of Higson and Roe geometrically part III: higher invariants. Math. Ann., 366(3-4):1513–1559, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Dranishnikov, S. Ferry, S. Weinberger. An etale approach to the Novikov conjecture. Comm. Pure Appl. Math. 61 (2008), no. 2, 139–155.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Dranishnikov, T. Januszkiewicz. Every Coxeter group acts amenably on a compact space. Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT). Topology Proc. 24 (1999), Spring, 135–141.

    Google Scholar 

  43. F. T. Farrell, W. C. Hsiang. On Novikov’s conjecture for nonpositively curved manifolds. Ann. of Math. (2) 113 (1981), no. 1, 199–209.

    Google Scholar 

  44. T. Farrell, L. Jones. A topological analogue of Mostow’s rigidity theorem. J. Amer. Math. Soc. 2 (1989), no. 2, 257–370.

    Google Scholar 

  45. T. Farrell, L. Jones. Classical aspherical manifolds. CBMS Regional Conference Series in Mathematics, 75. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990.

    Google Scholar 

  46. T. Farrell, L. Jones. Topological rigidity for compact non-positively curved manifolds. Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), 229–274, Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993.

    Google Scholar 

  47. T. Farrell, L. Jones. Rigidity for aspherical manifolds withπ 1 ⊂GLm(R). Asian J. Math. 2 (1998), no. 2, 215–262.

    Google Scholar 

  48. A. T. Fomenko, A. S. Mishchenko. The index of elliptic operators overC -algebras. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 4, 831–859, 967.

    Google Scholar 

  49. S. Ferry, E. Pedersen. Epsilon surgery theory. Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), 167–226, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  50. D. Fisher, L. Silberman. Groups not acting on manifolds. Int. Math. Res. Not. IMRN 2008, no. 16, Art. ID rnn060, 11 pp.

    Google Scholar 

  51. S. Ferry, S. Weinberger. Curvature, tangentiality, and controlled topology. Invent. Math. 105 (1991), no. 2, 401–414.

    Article  MathSciNet  MATH  Google Scholar 

  52. S. Ferry, S. Weinberger. A coarse approach to the Novikov conjecture. Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), 147–163, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995.

    Chapter  MATH  Google Scholar 

  53. S. Gong, J. Wu, G. Yu. The Novikov conjecture, the group of volume preserving diffeomorphisms and Hilbert-Hadamard spaces. arXiv:1811.02086, 2018.

    Google Scholar 

  54. R. I. Grigorchuk. Degrees of growth of finitely generated groups and the theory of invariant means. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985.

    Google Scholar 

  55. M. Gromov. Hyperbolic groups. In Gersten, Steve M. Essays in group theory. Mathematical Sciences Research Institute Publications. 8. New York: Springer. pp. 75–263.

    Google Scholar 

  56. M. Gromov. Asymptotic invariants of infinite groups. Geometric group theory, Vol. 2 (Sussex, 1991), 1–295, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993.

    Google Scholar 

  57. M. Gromov. Spaces and questions. GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. 2000, Special Volume, Part I, 118–161.

    Google Scholar 

  58. M. Gromov. Random walks in random groups. Geom. Funct. Anal. 13 (2003), no. 1, 73–146.

    Article  MathSciNet  MATH  Google Scholar 

  59. M. Gromov, B. Lawson. The classification of simply connected manifolds of positive scalar curvature. Ann. of Math. (2), 111(3):423–434, 1980.

    Google Scholar 

  60. M. Gromov, B. Lawson. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math. No. 58 (1983), 83–196 (1984).

    Google Scholar 

  61. A. Gorokhovsky, H. Moriyoshi , P. Piazza. A note on the higher Atiyah-Patodi-Singer index theorem on Galois coverings. J. Noncommut. Geom., 10(1):265–306, 2016.

    Google Scholar 

  62. E. Guentner, N. Higson, S. Weinberger. The Novikov Conjecture for Linear Groups. Publ. Math. Inst. Hautes Études Sci. No. 101 (2005), 243–268.

    Google Scholar 

  63. E. Guentner, R. Tessera, G. Yu. A notion of geometric complexity and its application to topological rigidity. Invent. Math. 189 (2012), no. 2, 315–357.

    Article  MathSciNet  MATH  Google Scholar 

  64. E. Guentner, R. Willett, G. Yu. Dynamical complexity and controlled operator K-theory. Groups, Geometry and Dynamics, Vol. 7, 2 (2013) 377–402.

    Google Scholar 

  65. U. Hamenstädt. Geometry of the mapping class groups. I. Boundary amenability. Invent. Math. 175 (2009), no. 3, 545–609.

    Article  MathSciNet  MATH  Google Scholar 

  66. S. Hanke, T. Schick. The strong Novikov conjecture for low degree cohomology. Geom. Dedicata 135 (2008), 119–127.

    Article  MathSciNet  MATH  Google Scholar 

  67. N. Higson. Bivariant K-theory and the Novikov conjecture. Geom. Funct. Anal. 10 (2000), no. 3, 563–581.

    Article  MathSciNet  MATH  Google Scholar 

  68. N. Higson, G. Kasparov. E -theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math. 144 (2001), no. 1, 23–74.

    Article  MathSciNet  MATH  Google Scholar 

  69. N. Higson, J. Roe. Mapping surgery to analysis. I. Analytic signatures. K-Theory, 33(4):277–299, 2005.

    Google Scholar 

  70. N. Higson, J. Roe. Mapping surgery to analysis. II. Geometric signatures. K-Theory, 33(4):301–324, 2005.

    Google Scholar 

  71. N. Higson, J. Roe. Mapping surgery to analysis. III. Exact sequences. K-Theory, 33(4):325–346, 2005.

    Google Scholar 

  72. N. Higson, J. Roe. N. Higson and J. Roe. K-homology, assembly and rigidity theorems for relative eta invariants. Pure Appl. Math. Q., 6 (2, Special Issue: In honor of Michael Atiyah and Isadore Singer):555–601, 2010.

    Google Scholar 

  73. N. Higson, V. Lafforgue, G. Skandalis. Counterexamples to the Baum-Connes conjecture. Geom. Funct. Anal. 12 (2002), no. 2, 330–354.

    Google Scholar 

  74. M. Hilsum, G. Skandalis. Georges Invariance par homotopie de la signature à coefficients dans un fibré presque plat. (French) [Homotopy invariance of the signature with coefficients in an almost flat fiber bundle]. J. Reine Angew. Math. 423 (1992), 73–99.

    Google Scholar 

  75. L. Ji. The integral Novikov conjectures for linear groups containing torsion elements. J. Topol. 1 (2008), no. 2, 306–316.

    Google Scholar 

  76. W. B. Johnson, N. L. Randrianarivony. l p (p > 2) does not coarsely embed into a Hilbert space. Proc. Amer. Math. Soc. 134 (2006), 1045–1050 (electronic).

    Google Scholar 

  77. J. Kaminker, J. Miller. Homotopy invariance of the analytic index of signature operators over C -algebras. J. Operator Theory, 14(1):113–127, 1985.

    Google Scholar 

  78. G. Kasparov. Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91 (1988), no. 1, 147–201.

    Article  MathSciNet  MATH  Google Scholar 

  79. G. Kasparov. K-theory, group C -algebras, and higher signatures (conspectus). In Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), volume 226 of London Math. Soc. Lecture Note Ser., pages 101–146. Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  80. G. Kasparov, G. Skandalis. Groups acting properly on “bolic” spaces and the Novikov conjecture. Ann. of Math. (2) 158 (2003), no. 1, 165–206.

    Article  MathSciNet  MATH  Google Scholar 

  81. R. C. Kirby, L. C. Siebenmann. Foundational essays on topological manifolds, smoothings, and triangulations. With notes by John Milnor and Michael Atiyah. Annals of Mathematics Studies, No. 88. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. vii+355 pp.

    Google Scholar 

  82. G. Kasparov, G. Yu. The Novikov conjecture and geometry of Banach spaces. Geometry and Topology 16 (2012), no. 3, 1859–1880.

    Article  MathSciNet  MATH  Google Scholar 

  83. Y. Kida. The mapping class group from the viewpoint of measure equivalence theory. Mem. Amer. Math. Soc. 196 (2008), no. 916.

    Google Scholar 

  84. V. Lafforgue. K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. (French) [Bivariant K-theory for Banach algebras and the Baum-Connes conjecture] Invent. Math. 149 (2002), no. 1, 1–95.

    Article  MathSciNet  MATH  Google Scholar 

  85. V. Lafforgue. La conjecture de Baum-Connes à coefficients pour les groupes hyperboliques. (French) [The Baum-Connes conjecture with coefficients for hyperbolic groups] J. Noncommut. Geom. 6 (2012), no. 1, 1–197.

    Google Scholar 

  86. E. Leichtnam, J. Lott, P. Piazza. On the homotopy invariance of higher signatures for manifolds with boundary. J. Differential Geom. 54 (2000), no. 3, 561–633.

    Article  MathSciNet  MATH  Google Scholar 

  87. E. Leichtnam, P. Piazza. Rho-classes, index theory and Stolz’ positive scalar curvature sequence. J. Topol. 7 (2014), no. 4, 965–1004.

    Google Scholar 

  88. E. Leichtnam, P. Piazza. On higher eta-invariants and metrics of positive scalar curvature. K-Theory, 24(4):341–359, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  89. E. Leichtnam, P. Piazza. Spectral sections and higher Atiyah-Patodi-Singer index theory on Galois coverings. Geom. Funct. Anal. 8 (1998), no. 1, 17–58.

    Google Scholar 

  90. E. Leichtnam, P. Piazza. Homotopy invariance of twisted higher signatures on manifolds with boundary. Bull. Soc. Math. France, 127(2):307–331, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  91. J. Lott. Higher eta-invariants. K-Theory, 6(3):191–233, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  92. J. Lott. DelocalizedL 2-invariants. J. Funct. Anal., 169(1):1–31, 1999.

    Google Scholar 

  93. V. Mathai. The Novikov conjecture for low degree cohomology classes. Geom. Dedicata 99 (2003), 1–15.

    Google Scholar 

  94. I. Mineyev, G. Yu. The Baum-Connes conjecture for hyperbolic groups. Invent. Math. 149 (2002), no. 1, 97–122.

    Article  MathSciNet  MATH  Google Scholar 

  95. A. S. Mishchenko. Infinite-dimensional representations of discrete groups, and higher signatures. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 81–106.

    Google Scholar 

  96. M. Manor, A. Naor. Metric cotype. Ann. of Math. (2) 168 (2008), no. 1, 247–298.

    Google Scholar 

  97. A. Nica. Induction theorems for groups of homotopy manifold structures. Mem. Amer. Math. Soc., 39(267):vi+108, 1982.

    Google Scholar 

  98. V. Nistor. Group cohomology and the cyclic cohomology of crossed products. Invent. Math., 99(2):411–424, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  99. S. P. Novikov. Algebraic construction and properties of Hermitian analogs of k-theory over rings with involution from the point of view of Hamiltonian formalism. Some applications to differential topology and to the theory of characteristic classes. Izv. Akad. Nauk SSSR, v. 34, 1970 I N2, pp. 253–288; II: N3, pp. 475–500.

    Google Scholar 

  100. S. P. Novikov. Topological invariance of rational classes of Pontrjagin. (Russian) Dokl. Akad. Nauk SSSR 163 1965 298–300.

    Google Scholar 

  101. P. Nowak, G. Yu. Large scale geometry. European Mathematical Society Publishing House, 2012.

    Google Scholar 

  102. D. Osajda. Small cancellation labellings of some infinite graphs and applications. arXiv:1406.5015, 2014.

    Google Scholar 

  103. H. Oyono-Oyono, G. Yu. On quantitative operator K-theory. Ann. Inst. Fourier (Grenoble) 65 (2015), no. 2, 605–674.

    Article  MathSciNet  MATH  Google Scholar 

  104. P. Piazza, T. Schick. Groups with torsion, bordism and rho invariants. Pacific J. Math., 232(2):355–378, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  105. P. Piazza, T. Schick. Rho-classes, index theory and Stolz’ positive scalar curvature sequence. J. Topol. 7 (2014), no. 4, 965–1004.

    Google Scholar 

  106. P. Piazza, T. Schick. The surgery exact sequence, K-theory and the signature operator. Ann. K-Theory 1 (2016), no. 2.

    Google Scholar 

  107. P. Piazza, V. F. Zenobi. Singular spaces, groupoids and metrics of positive scalar curvature. J. Geom. Phys. 137.

    Google Scholar 

  108. M. Pimsner. KK-groups of crossed products by groups acting on trees. Invent. Math. 86 (1986), no. 3, 603–634.

    Article  MathSciNet  MATH  Google Scholar 

  109. M. Pimsner, D. Voiculescu. K-groups of reduced crossed products by free groups. J. Operator Theory 8 (1982), no. 1, 131–156.

    Google Scholar 

  110. M. Puschnigg. The Kadison-Kaplansky conjecture for word-hyperbolic groups. Invent. math. 149 (2002), 153–194.

    Article  MathSciNet  MATH  Google Scholar 

  111. M. Puschnigg. New holomorphically closed subalgebras ofC -algebras of hyperbolic groups. Geom. Funct. Anal. 20 (2010), no. 1, 243–259.

    Google Scholar 

  112. Y. Qiao, J. Roe. On the localization algebra of Guoliang Yu. Forum Math. 22 (2010), no. 4, 657–665.

    Google Scholar 

  113. D. Ramras, R. Tessera, G. Yu. Finite decomposition complexity and the integral Novikov conjecture for higher algebraic K-theory. J. Reine Angew. Math. 694 (2014), 129–178.

    Google Scholar 

  114. J. Roe. Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc. 104 (1993), no. 497.

    Google Scholar 

  115. J. Roe. Index theory, coarse geometry, and topology of manifolds. CBMS Regional Conference Series in Mathematics, 90. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996.

    Google Scholar 

  116. J. Roe, Hyperbolic groups have finite asymptotic dimension. Proc. Amer. Math. Soc. 133 (2005), no. 9, 2489–2490.

    Article  MathSciNet  Google Scholar 

  117. J. Roe, Positive curvature, partial vanishing theorems, and coarse indices. Proc. Edinb. Math. Soc. (2) 59 (2016), no. 1, 223–233.

    Google Scholar 

  118. J. Rosenberg. C -algebras, positive scalar curvature, and the Novikov conjecture. Inst. Hautes Études Sci. Publ. Math. No. 58 (1983), 197–212 (1984).

    Google Scholar 

  119. J. Rosenberg. Manifolds of positive scalar curvature: a progress report. Surveys in differential geometry. Vol. XI, 259–294, Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007.

    Google Scholar 

  120. J. Rosenberg. Analytic Novikov for topologists. Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), 338–372, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995.

    Chapter  Google Scholar 

  121. J. Rosenberg, S. Stolz. Metrics of positive scalar curvature and connections with surgery. In Surveys on surgery theory, Vol. 2, volume 149 of Ann. of Math. Stud., pages 353–386. Princeton Univ. Press, Princeton, NJ, 2001.

    Google Scholar 

  122. J. Rosenberg, S. Weinberger. Higher G-indices and applications. Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 4, 479–495.

    Article  MathSciNet  MATH  Google Scholar 

  123. Z. Sela. Uniform embeddings of hyperbolic groups in Hilbert spaces. Israel J. Math. 80 (1992), no. 1-2, 171–181.

    Article  MathSciNet  MATH  Google Scholar 

  124. J. -P. Serre. Linear representations of finite groups. Translated from the second French edition by Leonard L. Scott. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg, 1977.

    Google Scholar 

  125. R. Schoen, S. T. YauOn the structure of manifolds with positive scalar curvature. Manuscripta Math., 28(1-3):159–183, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  126. G. Skandalis, J. Tu, G. Yu. The coarse Baum-Connes conjecture and groupoids. Topology 41 (2002), no. 4, 807–834.

    Article  MathSciNet  MATH  Google Scholar 

  127. S. Stolz. Concordance classes of positive scalar curvature metrics. Preprint.

    Google Scholar 

  128. D. Sullivan. Hyperbolic geometry and homeomorphisms. Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), pp. 543–555, Academic Press, New York-London, 1979.

    Chapter  Google Scholar 

  129. C. Wahl. The Atiyah-Patodi-Singer index theorem for Dirac operators overC -algebras. Asian J. Math., 17(2):265–319, 2013.

    Google Scholar 

  130. B.-L. Wang, H. Wang. Localized index and L 2-Lefschetz fixed-point formula for orbifolds. J. Differential Geom., 102(2):285–349, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  131. S. Weinberger. Variations on a theme of Borel. Book draft, available at http://math.uchicago.edu/~shmuel/VTBdraft.pdf.

  132. S. Weinberger. Aspects of the Novikov conjecture. Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988), 281–297, Contemp. Math., 105, Amer. Math. Soc., Providence, RI, 1990.

    Google Scholar 

  133. S. Weinberger, Z. Xie, G. Yu. Additivity of higher rho invariants and nonrigidity of topological manifolds. To appear in Communications on Pure and Applied Mathematics.

    Google Scholar 

  134. S. Weinberger, G. Yu. Finite part of operator K-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds. Geom. Topol. 19 (2015), no. 5, 2767–2799.

    Article  MathSciNet  MATH  Google Scholar 

  135. R. Willett, G. Yu. Higher index theory. Book draft, available at https://math.hawaii.edu/~rufus/Skeleton.pdf, 2018.

  136. R. Willett, G. Yu. Higher index theory for certain expanders and Gromov monster groups, I. Adv. Math. 229 (2012), no. 3, 1380–1416.

    Article  MathSciNet  MATH  Google Scholar 

  137. R. Willett, G. Yu. Higher index theory for certain expanders and Gromov monster groups, II. Adv. Math. 229 (2012), no. 3, 1762–1803.

    Google Scholar 

  138. Z. Xie, G. Yu. Positive scalar curvature, higher rho invariants and localization algebras. Adv. Math. 262 (2014), 823–866.

    Article  MathSciNet  MATH  Google Scholar 

  139. Z. Xie, G. Yu. Higher rho invariants and the moduli space of positive scalar curvature metrics. Adv. Math. 307 (2017), 1046–1069.

    Article  MathSciNet  MATH  Google Scholar 

  140. Z. Xie, G. Yu. A relative higher index theorem, diffeomorphisms and positive scalar curvature. Adv. Math., 250: 35–73, 2014.

    Google Scholar 

  141. Z. Xie, G. Yu. Delocalized eta invariants, algebraicity, and K-theory of groupC -algebras. arXiv:1805.07617.

    Google Scholar 

  142. Z. Xie, G. Yu, R. Zeidler. On the range of the relative higher index and the higher rho invariant for positive scalar curvature. arXiv:1712.03722.

    Google Scholar 

  143. G. Yu. Localization algebras and the coarse Baum-Connes conjecture. K-Theory 11 (1997), no. 4, 307–318.

    Article  MathSciNet  MATH  Google Scholar 

  144. G. Yu. The Novikov conjecture for groups with finite asymptotic dimension. Ann. of Math. (2) 147 (1998), no. 2, 325–355.

    Google Scholar 

  145. G. Yu. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139 (2000), no. 1, 201–240.

    Article  MathSciNet  MATH  Google Scholar 

  146. G. Yu. A characterization of the image of the Baum-Connes map. Quanta of maths, 649–657, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010.

    Google Scholar 

  147. R. Zeidler. Positive scalar curvature and product formulas for secondary index invariants. J. Topol. 2016.

    Google Scholar 

  148. V. Zenobi. Mapping the surgery exact sequence for topological manifolds to analysis. J. Topol. Anal. 9 (2017), no. 2, 329–361.

    Article  MathSciNet  MATH  Google Scholar 

  149. V. F. Zenobi. Adiabatic groupoid and secondary invariants in K-theory. Adv. Math. 347.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Alain Connes for numerous inspiring discussions. The author “Zhizhang Xie” is partially supported by NSF 1500823, NSF 1800737. The author “Guoliang Yu” is partially supported by NSF 1700021, NSF 1564398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, Z., Yu, G. (2019). Higher invariants in noncommutative geometry. In: Chamseddine, A., Consani, C., Higson, N., Khalkhali, M., Moscovici, H., Yu, G. (eds) Advances in Noncommutative Geometry. Springer, Cham. https://doi.org/10.1007/978-3-030-29597-4_12

Download citation

Publish with us

Policies and ethics