Skip to main content

Continuity properties and Alexandroff theorem in Vietoris topology

  • Chapter
  • First Online:
Atomicity through Fractal Measure Theory

Abstract

In this chapter, some continuity properties, such as increasing/decreasing convergence, exhaustivity, order continuity, regularity are introduced and studied in Vietoris topology for fuzzy set multifunctions taking values in the family of subsets of a Hausdorff linear topological space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apreutesei, G.: Families of subsets and the coincidence of hypertopologies. An. Şt. Univ. Iaşi XLIX, 1–18 (2003)

    Google Scholar 

  2. Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer, Dordrecht (1993)

    Book  Google Scholar 

  3. Billara, V.: Topologies for 2X. Macmillan, New York (1963)

    Google Scholar 

  4. Dinculeanu, N.: Measure Theory and Real Functions (in Romanian). Ed. Did. şi Ped., Bucureşti (1964)

    Google Scholar 

  5. Gavriluţ, A.: Properties of regularity for multisubmeasures with respect to the Vietoris topology. An. Şt. Univ. Iaşi, L, s. I a f. 2, 373–392 (2004)

    Google Scholar 

  6. Gavriluţ, A.: Properties of Regularity for Set Multifunctions (in Romanian). Venus Publishing House, Iaşi (2006)

    Google Scholar 

  7. Gavriluţ, A.: Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions. Fuzzy Sets Syst. 160, 1308–1317 (2009). Erratum in Fuzzy Sets and Systems 161, 2612–2613 (2010)

    Article  MathSciNet  Google Scholar 

  8. Gavriluţ, A.: Regularity and autocontinuity of set multifunctions. Fuzzy Sets Syst. 161, 681–693 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gavriluţ, A.: Abstract regular null-null-additive set multifunctions in Hausdorff topology, An. Şt. Univ. Iaşi 59(1). https://doi.org/10.2478/v10157-012-0029-4

    Article  MathSciNet  Google Scholar 

  10. Guo, C., Zhang, D.: On the set-valued fuzzy measures. Inform. Sci. 160, 13–25 (2004)

    Article  MathSciNet  Google Scholar 

  11. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, vol. I. Kluwer, Dordrecht (1997)

    Book  Google Scholar 

  12. Jiang, Q., Suzuki, H.: Lebesque and Saks decompositions of σ-finite fuzzy measures. Fuzzy Sets Syst. 75, 373–385 (1995)

    Article  Google Scholar 

  13. Jiang, Q., Suzuki, H., Wang, Z., Klir, G.: Exhaustivity and absolute continuity of fuzzy measures. Fuzzy Sets Syst. 96, 231–238 (1998)

    Article  MathSciNet  Google Scholar 

  14. Klein, E., Thompson, A.: Theory of Correspondences. Wiley, New York (1984)

    MATH  Google Scholar 

  15. Michael, E.: Topologies on spaces of subsets. Trans. AMS 71, 152–182 (1951)

    Article  MathSciNet  Google Scholar 

  16. Pap, E.: Null-additive Set Functions. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  17. Precupanu, T.: Linear Topological Spaces and Elements of Convex Analysis (in Romanian). Ed. Acad. Romania (1992)

    MATH  Google Scholar 

  18. Precupanu, A., Gavriluţ, A.: A set-valued Egoroff type theorem. Fuzzy Sets Syst. 175, 87–95 (2011)

    Article  MathSciNet  Google Scholar 

  19. Precupanu, A., Gavriluţ, A.: Set-valued Lusin type theorem for null-null-additive set multifunctions. Fuzzy Sets Syst. 204, 106–116 (2012)

    Article  MathSciNet  Google Scholar 

  20. Precupanu, A., Croitoru, A., Godet-Thobie, Ch.: Set-valued Integrals (in Romanian). Iaşi (2011)

    Google Scholar 

  21. Precupanu, A., Precupanu, T., Turinici, M., Apreutesei Dumitriu, N., Stamate, C., Satco, B.R., Văideanu, C., Apreutesei, G., Rusu, D., Gavriluţ, A.C., Apetrii, M.: Modern Directions in Multivalued Analysis and Optimization Theory (in Romanian). Venus Publishing House, Iaşi (2006)

    Google Scholar 

  22. Sugeno, M.: Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of Technology (1974)

    Google Scholar 

  23. Zhang, D., Guo, C.: Generalized fuzzy integrals of set-valued functions. Fuzzy Sets Syst. 76, 365–373 (1995)

    Article  MathSciNet  Google Scholar 

  24. Zhang, D., Wang, Z.: On set-valued fuzzy integrals. Fuzzy Sets Syst. 56, 237–241 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gavriluţ, A., Mercheş, I., Agop, M. (2019). Continuity properties and Alexandroff theorem in Vietoris topology. In: Atomicity through Fractal Measure Theory. Springer, Cham. https://doi.org/10.1007/978-3-030-29593-6_7

Download citation

Publish with us

Policies and ethics