Skip to main content

Genetic Markers in Tobacco, Usage for Map Development, Diversity Studies, and Quantitative Trait Loci Analysis

  • Chapter
  • First Online:
The Tobacco Plant Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 602 Accesses

Abstract

Tobacco (Nicotiana tabacum L.) is an allotetraploid species in the Solanaceae family and has a complex genome. The first genetic maps of tobacco have been developed using microsatellite markers. Microsatellite markers were also used to create links between genetic maps of various Nicotiana species, providing a platform for synteny analysis. Markers are also an efficient tool to decipher the population genetics of tobacco. The three main tobacco types used in smoking products are flue-cured or Virginia, Burley, and Oriental. The commercial type is translated in genetic divergence resulting from the selection of adapted cultivars associated with agronomical and curing crop practices. Genetic markers are needed for trait discovery via quantitative trait locus mapping. They were used to identify loci involved in leaf surface components (cis-abienol and sucrose esters) and contributing to flavor and aroma characteristics. Another QTL mapping study targeting resistance to soilborne diseases such as black shank and bacterial wilt led to the identification of several loci that provide a better understanding of polygenic disease resistance in tobacco. Today with the availability of the genome sequence, single-nucleotide polymorphisms are being developed in tobacco. They are a fast, reproducible, and cost-efficient screening method for any genetic application from basic research to commercial breeding that may accelerate the pace of discoveries in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bindler G, van der Hoeven R, Gunduz I et al (2007) A microsatellite marker based linkage map of tobacco. Theor Appl Genet 114:341–349

    Article  CAS  Google Scholar 

  • Bindler G, Plieske J, Bakaher N et al (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123:219–230

    Article  Google Scholar 

  • Clausen RE, Cameron DR (1944) Inheritance in Nicotiana tabacum. XVIII. Monosomic analysis. Genetics 29:447–477

    Article  CAS  Google Scholar 

  • Clayton EE (1958) The genetics and breeding progress in tobacco during the last 50 years. Agron J 50:352–356

    Article  Google Scholar 

  • Davalieva K, Maleva I, Filiposki K, Spiroski O, Efremov GD (2010) Genetic variability of Macedonian tobacco varieties determined by microsatellite marker analysis. Diversity 2:439–449

    Article  CAS  Google Scholar 

  • Drake-Stowe K, Bakaher N, Goepfert S et al (2017) Multiple disease resistance loci affect soilborne disease resistance in tobacco (Nicotiana tabacum). Phytopathology 107(9):1055–1061

    Article  Google Scholar 

  • Edwards KD, Fernandez-Pozo N, Drake-Stowe K et al (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom 18(1):448

    Article  CAS  Google Scholar 

  • Fricano A, Bakaher N, Corvo MD et al (2012) Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genet 13:18

    Google Scholar 

  • Gadani F, Hayes A, Opperman CH et al (2003) Large scale genome sequencing and analysis of Nicotiana tabacum: the tobacco genome initiative. 5th Bergerac Tobacco Scientific Meeting, Institut du Tabac-Bergerac, Dordogne, France, pp 117–130

    Google Scholar 

  • Garner WW, Allard AA, Clayton EE (1937) Superior germplasm in tobacco. In: USDA yearbook No. 1580, pp 785–830

    Google Scholar 

  • Goodman J (ed) (2005) Tobacco in history and culture: an encyclopedia, vol 2. Thomson Gale, Michigan. ISBN 0-684-31453-3

    Google Scholar 

  • Henika FS (1932) The inheritance of the white burley character in tobacco. J Agric Res 44:477–493

    Google Scholar 

  • Julio E, Denoyes-Rothan B, Verrier JL, Dorlhac Borne F (2006) Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed 18:69–91

    Article  CAS  Google Scholar 

  • Killebrew JB (1884) Report on the culture and curing of tobacco in the United States. US Government Printing Office, Washington

    Book  Google Scholar 

  • Lewis RS, Parker RG, Danehower DA et al (2012) Impact of alleles at the Yellow Burley (Yb) loci and nitrogen fertilization rate on nitrogen utilization efficiency and tobacco-specific nitrosamine (TSNA) formation in air-cured tobacco. J Agric Food Chem 60:6454–6461

    Article  CAS  Google Scholar 

  • Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  Google Scholar 

  • Moon HS, Nifong JM, Nicholson JS et al (2009a) Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci 49:2149–2159

    Article  CAS  Google Scholar 

  • Moon HS, Nicholson JS, Heineman A et al (2009b) Changes in genetic diversity of U.S. flue-cured tobacco germplasm over seven decades of cultivar development. Crop Sci 49:498–508

    Article  Google Scholar 

  • Murphy JP, Cox TS, Rufty RC, Rodgers DM (1987) A representation of the pedigree relationships among flue-cured tobacco cultivars. Tob Sci 31:70–75

    Google Scholar 

  • Sallaud C, Giacalone C, Töpfer R et al (2012) Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J 72(1):1–17. Erratum in: Plant J (2013) 74(4):713

    Google Scholar 

  • Sierro N, Battey JND, Ouadi S et al (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833

    Article  CAS  Google Scholar 

  • Sim SC, Durstewitz G, Plieske J et al (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS ONE 7(7):e40563

    Article  CAS  Google Scholar 

  • Stines BJ, Mann TJ (1960) Diploidization in Nicotiana tabacum: a study of the yellow burley character. J Hered 51:222–237

    Article  Google Scholar 

  • Tong ZJ, Yang ZM, Chen XJ et al (2012) Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breed 131:674–680

    Article  CAS  Google Scholar 

  • Tong Z, Xiao B, Jiao F et al (2016) Large-scale development of SSR markers in tobacco and construction of a linkage map in flue-cured tobacco. Breed Sci 66(3):381–390

    Article  Google Scholar 

  • Vontimitta V, Danehower DA, Steede T, Moon HS, Lewis RS (2010) Analysis of a Nicotiana tabacum L. genomic region controlling two leaf surface chemistry traits. J Agric Food Chem 58:294–300

    Article  CAS  Google Scholar 

  • Vontimitta V, Lewis RS (2012) Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beinhart-1000. Mol Breed 29:89–98

    Article  Google Scholar 

  • Vos PG, Uitdewilligen JG, Voorrips RE, Visser RG, van Eck HJ (2015) Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet 128(12):2387–2401

    Article  CAS  Google Scholar 

  • Wang X, Yang S, Chen Y et al (2018) Comparative genome-wide characterization leading to simple sequence repeat marker development for Nicotiana. BMC Genom 19:500

    Article  Google Scholar 

  • Wolf A, Wolf FT (1948) The origin of tobaccos of the oriental type. Bull Torrey Bot Club 75:51–55

    Article  Google Scholar 

  • Wu F, Eannetta NT, Xu Y et al (2010) COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827

    Article  Google Scholar 

  • Wu Q, Wu X, Zhang X et al (2014) Mapping of two white stem genes in tetraploid common tobacco (Nicotiana tabacum L.) Mol Breed 34:1065–1074

    Google Scholar 

  • Xiao B, Tan Y, Long N et al (2015) SNP-based genetic linkage map of tobacco (Nicotiana tabacum L.) using next-generation RAD sequencing. J Biol Res 22:11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bakaher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakaher, N. (2020). Genetic Markers in Tobacco, Usage for Map Development, Diversity Studies, and Quantitative Trait Loci Analysis. In: Ivanov, N.V., Sierro, N., Peitsch, M.C. (eds) The Tobacco Plant Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-29493-9_3

Download citation

Publish with us

Policies and ethics