Skip to main content

Stem/Progenitor Cell Populations Resident in the Lung and the Role of Stromal Support in Their Maintenance and Differentiation

  • Chapter
  • First Online:
  • 353 Accesses

Abstract

Lungs are vital organs for respiration, being enabled by their complex three-dimensional organization [1]. Airway tubes bifurcate into millions of highly vascularized alveolar sacs, the alveoli, which are responsible for gas exchange. The gas exchange surface of the lungs makes up one of the largest surface areas of the human body. The alveoli receive air from the conducting airways, starting in the trachea, bifurcating into the bronchi and bronchioles, and ending in the terminal bronchioles, which divide into the alveolar ducts from which the alveoli arise.

The aim of this chapter is to provide an overview of the progenitors in adult lung tissue and the regulation of their maintenance and differentiation by the microenvironment during lung developmental as well as repair processes, when developmental pathways are often reactivated. As most work has been done in mouse studies, the current knowledge from animal studies will be summarized and translated to what is known from human lungs. In order to understand the regenerative processes in the lung, we will first provide insight into the complex three-dimensional organization and composition of the lung, its function, and the processes involved in lung development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wansleeben C, Barkauskas CE, Rock JR, Hogan BL. Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease. Wiley Interdiscip Rev Dev Biol. 2013;2(1):131–48.

    Article  CAS  PubMed  Google Scholar 

  2. Nikolic MZ, Sun D, Rawlins EL. Human lung development: recent progress and new challenges. Development. 2018;145(16). https://doi.org/10.1242/dev.163485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Klimczak A, Kozlowska U. Mesenchymal stromal cells and tissue-specific progenitor cells: their role in tissue homeostasis. Stem Cells Int. 2016;2016:4285215.

    Article  PubMed  CAS  Google Scholar 

  4. Rawlins EL, Hogan BL. Epithelial stem cells of the lung: privileged few or opportunities for many? Development. 2006;133(13):2455–65.

    Article  CAS  PubMed  Google Scholar 

  5. Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18(1):8–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bertoncello I, McQualter JL. Lung stem cells: do they exist? Respirology. 2013;18(4):587–95.

    Article  PubMed  Google Scholar 

  7. Kotton DN. Next-generation regeneration: the hope and hype of lung stem cell research. Am J Respir Crit Care Med. 2012;185(12):1255–60.

    Article  CAS  PubMed  Google Scholar 

  8. Kajstura J, Rota M, Hall SR, Hosoda T, D'Amario D, Sanada F, et al. Evidence for human lung stem cells. N Engl J Med. 2011;364(19):1795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kruk DMLW, Heijink IH, Slebos DJ, Timens W, Ten Hacken NH. Mesenchymal stromal cells to regenerate emphysema: on the horizon? Respiration. 2018; 1–11.

    Article  PubMed  Google Scholar 

  10. Weibel ER. It takes more than cells to make a good lung. Am J Respir Crit Care Med. 2013;187(4):342–6.

    Article  CAS  PubMed  Google Scholar 

  11. Weinberger SE. Principles of pulmonary medicine. 4th ed. Philadelphia: Elsevier Saunders; 2004.

    Google Scholar 

  12. Wheather PR, Burkitt HG, Daniels VG. Functional histology. 1st ed. New York: Churchill Livingstone; 1979.

    Google Scholar 

  13. Lee JH, Rawlins EL. Developmental mechanisms and adult stem cells for therapeutic lung regeneration. Dev Biol. 2018;433(2):166–76.

    Article  CAS  PubMed  Google Scholar 

  14. Shi W, Chen F, Cardoso WV. Mechanisms of lung development: contribution to adult lung disease and relevance to chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(7):558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCulley D, Wienhold M, Sun X. The pulmonary mesenchyme directs lung development. Curr Opin Genet Dev. 2015;32:98–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rock JR, Randell SH, Hogan BL. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 2010;3(9–10):545–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 2009;106(1091–6490; 0027–8424; 31):12771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rock JR, Hogan BL. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol. 2011;27:493–512.

    Article  CAS  PubMed  Google Scholar 

  19. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol. 2004;164(2):577–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hegab AE, Ha VL, Gilbert JL, Zhang KX, Malkoski SP, Chon AT, et al. Novel stem/progenitor cell population from murine tracheal submucosal gland ducts with multipotent regenerative potential. Stem Cells. 2011;29(8):1283–93.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lynch TJ, Anderson PJ, Rotti PG, Tyler SR, Crooke AK, Choi SH, et al. Submucosal gland Myoepithelial cells are reserve stem cells that can regenerate mouse tracheal epithelium. Cell Stem Cell. 2018;22(5):779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, et al. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell. 2009;4(6):525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Giangreco A, Reynolds SD, Stripp BR. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol. 2002;161(1):173–82.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121(6):823–35.

    Article  CAS  PubMed  Google Scholar 

  25. Kim CF. Paving the road for lung stem cell biology: bronchioalveolar stem cells and other putative distal lung stem cells. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1092–8.

    Article  CAS  PubMed  Google Scholar 

  26. Weiss DJ. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 2014;32(1):16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghosh M, Helm KM, Smith RW, Giordanengo MS, Li B, Shen H, et al. A single cell functions as a tissue-specific stem cell and the in vitro niche-forming cell. Am J Respir Cell Mol Biol. 2011;45(3):459–69.

    Article  CAS  PubMed  Google Scholar 

  28. Reynolds SD, Giangreco A, Power JH, Stripp BR. Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol. 2000;156(1):269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song H, Yao E, Lin C, Gacayan R, Chen MH, Chuang PT. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci U S A. 2012;109(43):17531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013;123(7):3025–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 2014;15(2):123–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jain R, Barkauskas CE, Takeda N, Bowie EJ, Aghajanian H, Wang Q, et al. Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat Commun. 2015;6:6727.

    Article  CAS  PubMed  Google Scholar 

  33. Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee JH, et al. Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2012;302(9):L829–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar PA, Hu Y, Yamamoto Y, Hoe NB, Wei TS, Mu D, et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell. 2011;147(3):525–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, et al. Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest. 2011;121(7):2855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA, Kong J, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555(7695):251–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science. 2018;359(6380):1118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McQualter JL, Anthony D, Bozinovski S, Prele CM, Laurent GJ. Harnessing the potential of lung stem cells for regenerative medicine. Int J Biochem Cell Biol. 2014;56:82–91.

    Article  CAS  PubMed  Google Scholar 

  39. Yuan T, Volckaert T, Chanda D, Thannickal VJ, De Langhe SP. Fgf10 signaling in lung development, homeostasis, disease, and repair after injury. Front Genet. 2018;9:418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. El Agha E, Bellusci S. Walking along the fibroblast growth factor 10 route: a key pathway to understand the control and regulation of epithelial and mesenchymal cell-lineage formation during lung development and repair after injury. Scientifica (Cairo). 2014;2014:538379.

    Google Scholar 

  41. El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, et al. Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development. 2014;141(2):296–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Martin J, Helm K, Ruegg P, Varella-Garcia M, Burnham E, Majka S. Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy. 2008;10(2):140–51.

    Article  CAS  PubMed  Google Scholar 

  43. Volckaert T, Dill E, Campbell A, Tiozzo C, Majka S, Bellusci S, et al. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest. 2011;121(11):4409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Volckaert T, Yuan T, Chao CM, Bell H, Sitaula A, Szimmtenings L, et al. Fgf10-hippo epithelial-mesenchymal crosstalk maintains and recruits lung basal stem cells. Dev Cell. 2017;43(1):48–59.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee JH, Tammela T, Hofree M, Choi J, Marjanovic ND, Han S, et al. Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell. 2017;170(6):1149–1163.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McGowan SE, McCoy DM. Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309(5):L463–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Torday JS, Torres E, Rehan VK. The role of fibroblast transdifferentiation in lung epithelial cell proliferation, differentiation, and repair in vitro. Pediatr Pathol Mol Med. 2003;22(3):189–207.

    Article  CAS  PubMed  Google Scholar 

  48. Ruiz-Camp J, Morty RE. Divergent fibroblast growth factor signaling pathways in lung fibroblast subsets: where do we go from here? Am J Physiol Lung Cell Mol Physiol. 2015;309(8):L751–5.

    Article  CAS  PubMed  Google Scholar 

  49. Demayo F, Minoo P, Plopper CG, Schuger L, Shannon J, Torday JS. Mesenchymal-epithelial interactions in lung development and repair: are modeling and remodeling the same process? Am J Physiol Lung Cell Mol Physiol. 2002;283(3):L510–7.

    Article  CAS  PubMed  Google Scholar 

  50. Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol. 2010;298(6):L715–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leeman KT, Fillmore CM, Kim CF. Lung stem and progenitor cells in tissue homeostasis and disease. Curr Top Dev Biol. 2014;107:207–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sinclair KA, Yerkovich ST, Chen T, McQualter JL, Hopkins PM, Wells CA, et al. Mesenchymal stromal cells are readily recoverable from lung tissue, but not the alveolar space, in healthy humans. Stem Cells. 2016;34(10):2548–58.

    Article  CAS  PubMed  Google Scholar 

  53. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  54. Liu A, Chen S, Cai S, Dong L, Liu L, Yang Y, et al. Wnt5a through noncanonical Wnt/JNK or Wnt/PKC signaling contributes to the differentiation of mesenchymal stem cells into type II alveolar epithelial cells in vitro. PLoS One. 2014;9(3):e90229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gong X, Sun Z, Cui D, Xu X, Zhu H, Wang L, et al. Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells. Cell Biol Int. 2014;38(4):405–11.

    Article  CAS  PubMed  Google Scholar 

  56. Mendez JJ, Ghaedi M, Steinbacher D, Niklason LE. Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds. Tissue Eng Part A. 2014;20(11–12):1735–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoffman AM, Paxson JA, Mazan MR, Davis AM, Tyagi S, Murthy S, et al. Lung-derived mesenchymal stromal cell post-transplantation survival, persistence, paracrine expression, and repair of elastase-injured lung. Stem Cells Dev. 2011;20(10):1779–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lindahl P, Karlsson L, Hellstrom M, Gebre-Medhin S, Willetts K, Heath JK, et al. Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development. 1997;124(20):3943–53.

    CAS  PubMed  Google Scholar 

  59. Ingenito EP, Tsai L, Murthy S, Tyagi S, Mazan M, Hoffman A. Autologous lung-derived mesenchymal stem cell transplantation in experimental emphysema. Cell Transplant. 2012;21(1):175–89.

    Article  PubMed  Google Scholar 

  60. Huh JW, Kim SY, Lee JH, Lee JS, Van Ta Q, Kim M, et al. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol. 2011;301(3):L255–66.

    Article  CAS  PubMed  Google Scholar 

  61. Zhen G, Liu H, Gu N, Zhang H, Xu Y, Zhang Z. Mesenchymal stem cells transplantation protects against rat pulmonary emphysema. Front Biosci. 2008;13:3415–22.

    Article  CAS  PubMed  Google Scholar 

  62. Akram KM, Samad S, Spiteri MA, Forsyth NR. Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms. Respir Res. 2013;14:9. https://doi.org/10.1186/1465-9921-14-9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Broekman W, Amatngalim GD, de Mooij-Eijk Y, Oostendorp J, Roelofs H, Taube C, et al. TNF-alpha and IL-1beta-activated human mesenchymal stromal cells increase airway epithelial wound healing in vitro via activation of the epidermal growth factor receptor. Respir Res. 2016;17:3. https://doi.org/10.1186/s12931-015-0316-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Evans MJ, Van Winkle LS, Fanucchi MV, Plopper CG. Cellular and molecular characteristics of basal cells in airway epithelium. Exp Lung Res. 2001;27(5):401–15.

    Article  CAS  PubMed  Google Scholar 

  65. Teixeira VH, Nadarajan P, Graham TA, Pipinikas CP, Brown JM, Falzon M, et al. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors. elife. 2013;2:e00966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Watson JK, Rulands S, Wilkinson AC, Wuidart A, Ousset M, Van Keymeulen A, et al. Clonal dynamics reveal two distinct populations of basal cells in slow-turnover airway epithelium. Cell Rep. 2015;12(1):90–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pardo-Saganta A, Law BM, Gonzalez-Celeiro M, Vinarsky V, Rajagopal J. Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge. Am J Respir Cell Mol Biol. 2013;48(3):364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rawlins EL, Hogan BL. Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L231–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rawlins EL, Ostrowski LE, Randell SH, Hogan BL. Lung development and repair: contribution of the ciliated lineage. Proc Natl Acad Sci U S A. 2007;104(2):410–7.

    Article  CAS  PubMed  Google Scholar 

  70. Bravo DT, Soudry E, Edward JA, Le W, Nguyen AL, Hwang PH, et al. Characterization of human upper airway epithelial progenitors. Int Forum Allergy Rhinol. 2013;3(10):841–7.

    Article  PubMed  Google Scholar 

  71. Hegab AE, Ha VL, Darmawan DO, Gilbert JL, Ooi AT, Attiga YS, et al. Isolation and in vitro characterization of basal and submucosal gland duct stem/progenitor cells from human proximal airways. Stem Cells Transl Med. 2012;1(10):719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mercer RR, Russell ML, Roggli VL, Crapo JD. Cell number and distribution in human and rat airways. Am J Respir Cell Mol Biol. 1994;10(6):613–24.

    Article  CAS  PubMed  Google Scholar 

  73. Hackett TL, Shaheen F, Johnson A, Wadsworth S, Pechkovsky DV, Jacoby DB, et al. Characterization of side population cells from human airway epithelium. Stem Cells. 2008;26(1549–4918; 1066–5099; 10):2576–85.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Post S, Heijink IH, Hesse L, Koo HK, Shaheen F, Fouadi M, et al. Characterization of a lung epithelium specific E-cadherin knock-out model: implications for obstructive lung pathology. Sci Rep. 2018;8(1):13275. https://doi.org/10.1038/s41598-018-31500-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gosney JR. Neuroendocrine cell populations in postnatal human lungs: minimal variation from childhood to old age. Anat Rec. 1993;236(1):177–80.

    Article  CAS  PubMed  Google Scholar 

  76. Cutz E, Gillan JE, Bryan AC. Neuroendocrine cells in the developing human lung: morphologic and functional considerations. Pediatr Pulmonol. 1985;1(3 Suppl):S21–9.

    CAS  PubMed  Google Scholar 

  77. Li X, Rossen N, Sinn PL, Hornick AL, Steines BR, Karp PH, et al. Integrin alpha6beta4 identifies human distal lung epithelial progenitor cells with potential as a cell-based therapy for cystic fibrosis lung disease. PLoS One. 2013;8(12):e83624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest. 2007;117(4):989–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rehan VK, Sugano S, Wang Y, Santos J, Romero S, Dasgupta C, et al. Evidence for the presence of lipofibroblasts in human lung. Exp Lung Res. 2006;32(8):379–93.

    Article  CAS  PubMed  Google Scholar 

  80. Griffiths MJ, Bonnet D, Janes SM. Stem cells of the alveolar epithelium. Lancet. 2005;366(9481):249–60.

    Article  PubMed  Google Scholar 

  81. in't Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica. 2003;88(8):845–52.

    Google Scholar 

  82. Sabatini F, Petecchia L, Tavian M, Jodon de Villeroche V, Rossi GA, Brouty-Boye D. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Investig. 2005 Aug;85(8):962–71.

    Article  CAS  PubMed  Google Scholar 

  83. Rolandsson Enes S, Andersson Sjoland A, Skog I, Hansson L, Larsson H, Le Blanc K, et al. MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Sci Rep. 2016;6:29160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rolandsson S, Karlsson JC, Scheding S, Westergren-Thorsson G. Specific subsets of mesenchymal stroma cells to treat lung disorders--finding the holy grail. Pulm Pharmacol Ther. 2014;29(2):93–5.

    Article  CAS  PubMed  Google Scholar 

  85. Rolandsson S, Andersson Sjoland A, Brune JC, Li H, Kassem M, Mertens F, et al. Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells. BMJ Open Respir Res. 2014;1(1):e000027. https://doi.org/10.1136/bmjresp-2014-000027.. eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kennelly H, Mahon BP, English K. Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Sci Rep. 2016;6:38207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schweitzer KS, Johnstone BH, Garrison J, Rush NI, Cooper S, Traktuev DO, et al. Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am J Respir Crit Care Med. 2011;183(2):215–25.

    Article  PubMed  Google Scholar 

  88. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143(6):1590–8.

    Article  CAS  PubMed  Google Scholar 

  89. Stolk J, Broekman W, Mauad T, Zwaginga JJ, Roelofs H, Fibbe WE, et al. A phase I study for intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema. QJM. 2016;109(5):331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chambers DC, Enever D, Ilic N, Sparks L, Whitelaw K, Ayres J, et al. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology. 2014;19(7):1013–8.

    Article  PubMed  Google Scholar 

  91. Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts. Thorax. 2015;70(5):482–9.

    Article  PubMed  Google Scholar 

  92. Cheng H, Qiu L, Ma J, Zhang H, Cheng M, Li W, et al. Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Mol Biol Rep. 2011;38(8):5161–8.

    Article  CAS  PubMed  Google Scholar 

  93. Ricciardi M, Malpeli G, Bifari F, Bassi G, Pacelli L, Nwabo Kamdje AH, et al. Comparison of epithelial differentiation and immune regulatory properties of mesenchymal stromal cells derived from human lung and bone marrow. PLoS One. 2012;7(5):e35639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kruk DMLW, de Bruin HG, Lodewijk M, Hof D, Daamen W, van Kuppevelt T, Rojas M, Timens W, ten Hacken NTH, Heijink IH. Differential gene expression of repair factors in mesenchymal stromal cells from different sources in emphysema. Eur Respir J. 2017;50:OA4438. https://doi.org/10.1183/1393003.congress-2017.OA4438.

    Article  Google Scholar 

  95. Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, et al. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol. 2014;51(3):455–65.

    Article  PubMed  CAS  Google Scholar 

  96. Sinclair KA, Yerkovich ST, Hopkins PM, Chambers DC. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res Ther. 2016;7(1):91. https://doi.org/10.1186/s13287-016-0354-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene H. Heijink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heijink, I.H., ten Hacken, N.H.T. (2019). Stem/Progenitor Cell Populations Resident in the Lung and the Role of Stromal Support in Their Maintenance and Differentiation. In: Burgess, J., Heijink, I. (eds) Stem Cell-Based Therapy for Lung Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-29403-8_2

Download citation

Publish with us

Policies and ethics