Skip to main content

Modeling with Integrodifference Equations

  • Chapter
  • First Online:
Book cover Integrodifference Equations in Spatial Ecology

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 49))

Abstract

We derive the basic integrodifference equation and discuss its two main ingredients: the growth function and the dispersal kernel. We introduce several ecological concepts that recur throughout this book and highlight how ecological assumptions are reflected in the mathematical model. This detailed understanding will allow us to formulate ecological insights from the mathematical results and understand the limitations of these insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allee, W. (1949). Principles of animal ecology. Christchurch: Saunders.

    Google Scholar 

  • Andersen, M. (1991). Properties of some density-dependent integrodifference equation population models. Mathematical Biosciences, 104, 135–157.

    Article  Google Scholar 

  • Bellows, T. (1981). The descriptive properties of some models for density dependence. Journal of Animal Ecology, 50(1), 139–156.

    Article  MathSciNet  Google Scholar 

  • Beverton, R., & Holt, S. (1957). On the Dynamics of Exploited Fish Populations. Fisheries Investigation Series (vol. 2, no. 19). London: Ministry of Agriculture, Fisheries, and Food.

    Google Scholar 

  • Brännström, A., & Sumpter, D. (2005). The role of competition and clustering in population dynamics. Proceedings of the Royal Society of London B, 272, 2065–2072.

    Google Scholar 

  • Bullock, J., & Clarke, R. (2000). Long distance seed dispersal by wind: Measuring and modelling the tail of the curve. Oecologia, 124, 506–521.

    Google Scholar 

  • Courchamp, F., Berec, L., & Gascoinge, J. (2008). Allee effects. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Edelstein-Keshet, L. (2005). Mathematical models in biology. Philadelphia: SIAM.

    Book  Google Scholar 

  • Etienne, R., Wertheim, B., Hemerik, L., Schneider, P., & Powell, J. (2002). The interaction between dispersal, the Allee effect and scramble competition affects population dynamics. Ecological Modelling, 148, 153–168.

    Article  Google Scholar 

  • Fujiwara, M., Anderson, K., Neubert, M., & Caswell, H. (2006). On the estimation of dispersal kernels from individual mark-recapture data. Environmental and Ecological Statistics, 13, 183–197.

    Article  MathSciNet  Google Scholar 

  • Geritz, S., & Kisdi, É. (2004). On the mechanistic underpinning of discrete-time population models with complex dynamics. Journal of Theoretical Biology, 228, 261–269.

    Article  MathSciNet  Google Scholar 

  • Hassell, M. (1975). Density-dependence in single-species populations. Journal of Animal Ecology, 44(1), 283–295.

    Article  Google Scholar 

  • Kot, M. (2001). Elements of mathematical ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kot, M., Lewis, M., & van den Driessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology, 77, 2027–2042.

    Article  Google Scholar 

  • Lewis, M., Neubert, M., Caswell, H., Clark, J., & Shea, K. (2006). A guide to calculating discrete-time invasion rates from data. In M. Cadotte, S. McMahon, & T. Fukami (Eds.), Conceptual ecology and invasions biology: Reciprocal approaches to nature (pp. 169–192). Berlin: Springer.

    Chapter  Google Scholar 

  • Lutscher, F., & Petrovskii, S. (2008). The importance of census times in discrete-time growth-dispersal models. Journal of Biological Dynamics, 2(1), 55–63.

    Article  MathSciNet  Google Scholar 

  • May, R. (1975). Biological populations obeying difference equations: Stable points, stable cycles, and chaos. Journal of Theoretical Biology, 51, 511–524.

    Article  Google Scholar 

  • Murray, J. D. (2001). Mathematical biology I: An introduction. Berlin: Springer.

    Google Scholar 

  • Musgrave, J., Girard, A., & Lutscher, F. (2015). Population spread in patchy landscapes under a strong Allee effect. Theoretical Ecology, 8(3), 313–326.

    Article  Google Scholar 

  • Nathan, R., Klein, E., Robledo-Arnuncio, J. J., & Revilla, E. (2012). Dispersal kernels: Review. In J. Clobert, M. Baguette, T. G. Benton, & J. M. Bullock (Eds.), Dispersal ecology and evolution (chap. 15.1). Oxford: Oxford University Press.

    Google Scholar 

  • Neubert, M., Kot, M., & Lewis, M. A. (1995). Dispersal and pattern formation in a discrete-time predator–prey model. Theoretical Population Biology, 48(1), 7–43.

    Article  Google Scholar 

  • Ricker, W. (1954). Stock and recruitment. Journal of Fisheries Research Board of Canada, 11, 559–632.

    Article  Google Scholar 

  • Sandefur, J. (2018). A unifying approach to discrete single-species populations models. Discrete & Continuous Dynamical Systems - Series B, 23, 493–508.

    Article  MathSciNet  Google Scholar 

  • Schreiber, S. (2003). Allee effects, extinctions, and chaotic transients in simple population models. Theoretical Population Biology, 64, 201–209.

    Article  Google Scholar 

  • Tufto, J., Ringsby, T.-H., Dhondt, A., Adriaensen, F., & Matthysen, E. (2005). A parametric model for estimation of dispersal patterns applied to five passerine spatially structured populations. The American Naturalist, 165, E13–E26.

    Article  Google Scholar 

  • Veit, R. R., & Lewis, M. A. (1996). Dispersal, population growth, and the Allee effect: Dynamics of the house finch invasion in eastern North America. The American Naturalist, 148(2), 255–274.

    Article  Google Scholar 

  • Wang, M.-H., Kot, M., & Neubert, M. (2002). Integrodifference equations, Allee effects, and invasions. Journal of Mathematical Biology, 44, 150–168.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutscher, F. (2019). Modeling with Integrodifference Equations. In: Integrodifference Equations in Spatial Ecology. Interdisciplinary Applied Mathematics, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-29294-2_2

Download citation

Publish with us

Policies and ethics