Skip to main content

Two Interacting Populations

  • Chapter
  • First Online:
Integrodifference Equations in Spatial Ecology

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 49))

  • 828 Accesses

Abstract

Most biological populations do not exist in isolation but interact with other species in many ways that may increase or decrease their reproductive ability, affect their survival, or alter their dispersal behavior. Species interactions can lead to phenomena such as sustained population oscillations or competitive exclusion. In this chapter, we present some of the spatial aspects of population interaction in the context of IDEs. We begin with a brief background on nonspatial models before we move to study critical patch-sizes for predator and prey systems. Some of the most surprising and beautiful results in this section relate to dispersal-induced pattern formation in these systems. Spatial invasion dynamics of predator and prey show rich and complex behavior. We then present the phenomenon of anomalous spreading speeds in mutualism systems. Finally, we consider several aspects of persistence and invasion of competing species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, there are four possibilities: a species can activate itself and the other, it can inhibit itself and the other, it can activate itself and inhibit the other, or it can inhibit itself and activate the other. Classically, we speak of an activator (inhibitor) if the species activates (inhibits) itself and the other. An activator–inhibitor system is one that consists of an activator and an inhibitor in the classical sense.

  2. 2.

    Diffusion-driven instability can also arise when one species activates itself and inhibits the other, and the other species inhibits itself and activates the other. This combination is sometimes referred to as positive feedback.

References

  • Adler, F. (1993). Migration alone can produce persistence of host–parasitoid models. The American Naturalist, 141, 642–650.

    Article  Google Scholar 

  • Allen, L. (2006). An introduction to mathematical biology. New York: Pearson.

    Google Scholar 

  • Allen, E., Allen, L., & Gilliam, X. (1996). Dispersal and competition models for plants. Journal of Mathematical Biology, 34, 455–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Allen, J., Brewster, C., & Slone, D. (2001). Spatially explicit ecological models: A spatial convolution approach. Chaos, Solitons & Fractals, 12, 333–347.

    Article  MATH  Google Scholar 

  • Alonso, D., Bartumeus, F., & Catalan, J. (2002). Mutual interference between predators can give rise to Turing spatial patterns. Ecology, 83(1), 28–34.

    Article  Google Scholar 

  • Assaneo, F., Coutinho, R.M., Lin, Y., Mantilla, C., & Lutscher, F. (2013). Dynamics and coexistence in a system with intraguild mutualism. Ecological Complexity, 14, 64–74.

    Article  Google Scholar 

  • Aydogmus, O., Kang, Y., Kavgaci, M., & Bereketoglu, H. (2017). Dynamical effects of nonlocal interactions in discrete-time growth-dispersal models with logistic-type nonlinearities. Ecological Complexity, 31, 88–95.

    Article  Google Scholar 

  • Beddington, J. R., Free, C. A., & Lawton, J. H. (1975). Dynamic complexity in predator–prey models framed in difference equations. Nature, 255(5503), 58.

    Article  Google Scholar 

  • Boucher, D. (1982). The ecology of mutualism. Annual Review of Ecology and Systematics, 13, 315–347.

    Article  Google Scholar 

  • Bramburger, J., & Lutscher, F. (2019) Analysis of integrodifference equations with a separable dispersal kernel. Acta Applicandae Mathematicae, 161(1), 127–151.

    Article  MathSciNet  MATH  Google Scholar 

  • Carrillo, C., Cherednichenko, K., Britton, N., & Mogie, M. (2009). Dynamic coexistence of sexual and asexual invasion fronts in a system of integro-difference equations. Bulletin of Mathematical Biology, 71, 1612–1625.

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo-Chavez, C., Li, B., & Wang, H. (2013). Some recent developments on linear determinacy. Mathematical Biosciences and Engineering, 10, 1419–1436.

    Article  MathSciNet  MATH  Google Scholar 

  • Cobbold, C., Lewis, M., Lutscher, F., & Roland, J. (2005). How parasitism affects critical patch size in a host–parasitoid system: Application to forest tent caterpillar. Theoretical Population Biology, 67(2), 109–125.

    Article  MATH  Google Scholar 

  • Dwyer, G., & Morris, W. (2006). Resource-dependent dispersal and the speed of biological invasions. The American Naturalist, 167(2), 165–176.

    Article  Google Scholar 

  • Edelstein-Keshet, L. (2005). Mathematical models in biology. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Elliott, E., & Cornell, S. (2012). Dispersal polymorphism and the speed of biological invasions. PLoS ONE, 7(7), e40496.

    Article  Google Scholar 

  • Fagan, W., Lewis, M., Neubert, M., & van den Driessche, P. (2002). Invasion theory and biological control. Ecology Letters, 5, 148–157.

    Article  Google Scholar 

  • Fagan, W., Lewis, M., Neubert, M., Aumann, C., Apple, J., & Bishop, J. (2005). When can herbivores slow or reverse the spread of an invading plant? A test case from mount St. Helens. The American Naturalist, 166, 669–685.

    Article  Google Scholar 

  • Fasani, S., & Rinaldi, S. (2011). Factors promoting or inhibiting Turing instability in spatially extended prey–predator systems. Ecological Modelling, 222, 3449–3452.

    Article  Google Scholar 

  • Fort, J. (2012). Synthesis between demic and cultural diffusion in the neolithic transition in Europe. Proceedings of the National Academy of Sciences of the United States of America, 109(46), 18669–18673.

    Article  Google Scholar 

  • Fort, J., Pérez-Losada, J., Suñol, J., Escoda, L., & Massaneda, J. (2008). Integro-difference equations for interacting species and the neolithic transition. New Journal of Physics, 10, 043045.

    Article  Google Scholar 

  • Gouhier, T., Guichard, F., & Menge, B. (2010). Ecological processes can synchronize marine population dynamics over continental scales. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8281–8286.

    Article  Google Scholar 

  • Hart, D., & Gardner, R. (1997). A spatial model for the spread of invading organisms subject to competition. Journal of Mathematical Biology, 35, 935–948.

    Article  MathSciNet  MATH  Google Scholar 

  • Hassell, M. P. (1978). The dynamics of arthropod predator–prey systems. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Holzer, M. (2014). Anomalous spreading in a system of coupled Fisher–KPP equations. Physica D, 270, 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes, J., Cobbold, C., Haynes, K., & Dwyer, G. (2015). Effects of forest spatial structure on insect outbreaks: Insights from a host–parasitoid model. The American Naturalist, 185(5), E130–E152.

    Article  Google Scholar 

  • Kanary, L., Musgrave, J., Locke, A., Tyson, R., & Lutscher, F. (2014). Modelling the dynamics of invasion and control of competing green crab genotypes. Theoretical Ecology, 7(4), 391–404.

    Article  Google Scholar 

  • Keener, J. (2000). Principles of applied mathematics. Boulder: Westview.

    MATH  Google Scholar 

  • Kot, M. (1989). Diffusion-driven period-doubling bifurcations. BioSystems, 22, 279–287.

    Article  Google Scholar 

  • Kot, M. (1992). Discrete-time travelling waves: Ecological examples. Journal of Mathematical Biology, 30, 413–436.

    Article  MathSciNet  MATH  Google Scholar 

  • Kot, M. (2001). Elements of mathematical ecology. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Kot, M., & Phillips, A. (2015). Bounds for the critical speed of climate-driven moving-habitat models. Mathematical Biosciences, 262, 65–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Kot, M., & Schaffer, W. (1986). Discrete-time growth-dispersal models. Mathematical Biosciences, 80, 109–136.

    Article  MathSciNet  MATH  Google Scholar 

  • Legaspi, Jr., B., Allen, J., Brewster, C., Morales-Ramos, J., & King, E. (1998). Areawide management of the cotton boll weevil: Use of a spatio-temporal model in augmentative biological control. Ecological Modelling, 110, 151–164.

    Article  Google Scholar 

  • Lewis, M., Li, B., & Weinberger, H. (2002). Spreading speed and linear determinacy for two-species competition models. Journal of Mathematical Biology, 45, 219–233.

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, M., Petrovskii, S., & Potts, J. (2016). The mathematics behind biological invasions. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Li, B. (2009). Some remarks on traveling wave solutions in competition models. Discrete and Continuous Dynamical Systems - Series B, 12, 389–399.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, K., Huang, J., Li, X., & He, Y. (2016b). Asymptotic behavior and uniqueness of traveling wave fronts in a competitive recursion system. Zeitschrift für Angewandte Mathematik und Physik, 67(6), 144.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, K., & Li, X. (2012a). Asymptotic behavior and uniqueness of traveling wave solutions in Ricker competition system. Journal of Mathematical Analysis and Applications, 389, 486–497.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, K., & Li, X. (2012b). Travelling wave solutions in integro-difference competition system. IMA Journal of Applied Mathematics, 78(3), 633–650.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B., Weinberger, H., & Lewis, M. (2005). Spreading speeds as slowest wave speeds for cooperative systems. Mathematical Biosciences, 196, 82–98.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, G. (2015). Traveling wave solutions for integro-difference systems. Journal of Differential Equations, 258, 2908–2940.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, H.-T. (1995). On a system of integrodifference equations modelling the propagation of genes. SIAM Journal on Mathematical Analysis, 26(1), 35–76.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, G., & Li, W.-T. (2010). Spreading speeds and traveling wavefronts for second order integrodifference equations. Journal of Mathematical Analysis and Applications, 361(2), 520–532.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, G., Li, W.-T., & Ruan, S. (2011). Spreading speeds and traveling waves in competitive recursion systems. Journal of Mathematical Biology, 62(2), 165–201.

    Article  MathSciNet  MATH  Google Scholar 

  • Lui, R. (1989a). Biological growth and spread modeled by systems of recursions. I Mathematical theory. Mathematical Biosciences, 93, 269–295.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F. (2008). Density-dependent dispersal in integrodifference equations. Journal of Mathematical Biology, 56(4), 499–524.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., & Iljon, T. (2013). Competition, facilitation and the Allee effect. Oikos, 122(4), 621–631.

    Article  Google Scholar 

  • May, M. (1973). Stability and complexity in model ecosystems. Princeton: Princeton University Press.

    Google Scholar 

  • May, R. M., Hassell, M. P., Anderson, R. M., & Tonkyn, D. W. (1981). Density dependence in host–parasitoid models. Journal of Animal Ecology, 50(3), 855–865.

    Article  MathSciNet  Google Scholar 

  • Murray, J. D. (2001). Mathematical biology I: An introduction. Berlin: Springer.

    Google Scholar 

  • Murray, J. D. (2002). Mathematical biology II: Spatial models and biomedical applications. Berlin: Springer.

    Book  Google Scholar 

  • Neubert, M., Caswell, H., & Murray, J. (2002). Transient dynamics and pattern formation: Reactivity is necessary for Turing instabilities. Mathematical Biosciences, 175, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Neubert, M., & Kot, M. (1992). The subcritical collapse of predator populations in discrete time predator–prey models. Mathematical Biosciences, 110, 45–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Neubert, M., Kot, M., & Lewis, M. A. (1995). Dispersal and pattern formation in a discrete-time predator–prey model. Theoretical Population Biology, 48(1), 7–43.

    Article  MATH  Google Scholar 

  • Nicholson, A. (1954). An outline of the dynamics of animal populations. Australian Journal of Zoology, 2, 9–65.

    Article  Google Scholar 

  • Nicholson, A., & Bailey, V. (1935). The balance of animal populations. Part I. Proceedings of the Zoological Society of London, 105(3), 551–598.

    Article  Google Scholar 

  • Okubo, A., & Levin, S. A. (2001). Diffusion and ecological problems: Modern perspectives. New York: Springer.

    Book  MATH  Google Scholar 

  • Okubo, A., Maini, P., Williamson, M., & Murray, J. (1989). On the spatial spread of the grey squirrel in Britain. Proceedings of the Royal Society B, 238, 113–125.

    Google Scholar 

  • Owen, M., & Lewis, M. (2001). How predation can slow, stop, or reverse a prey invasion. Bulletin of Mathematical Biology, 63, 655–684.

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, S., & Lin, G. (2011). Propagation of second order integrodifference equations with local monotonicity. Nonlinear Analysis: Real World Applications, 12, 535–544.

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, S., & Lin, G. (2014). Coinvasion-coexistence travelling wave solutions of an integro-difference competition system. Journal of Difference Equations and Applications, 20(4), 511–525.

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, S., & Yang, P. (2014). Traveling wave solutions in a Lotka-Volterra type competition recursion. Advances in Difference Equations, 2014(1), 173.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramanantoanina, A., Ouhinou, A., & Hui, C. (2014). Spatial assortment of mixed propagules explains the acceleration of range expansion. PLoS ONE, 9(8), e103409.

    Article  Google Scholar 

  • Ramanantoanina, A., Ouhinou, A., & Hui, C. (2015). Correction: Spatial assortment of mixed propagules explains the acceleration of range expansion. PLoS ONE, 10(8), e0136479.

    Article  Google Scholar 

  • Rietkerk, M., & van de Koppel, J. (2008). Regular pattern formation in real ecosystems. Trends in Ecology & Evolution, 23(3), 169–175.

    Article  Google Scholar 

  • Sherratt, J., Eagan, B., & Lewis, M. (1997). Oscillations and chaos behind predator–prey invasion: Mathematical artifact or ecological reality? Philosophical Transactions of the Royal Society of London B, 352, 21–38.

    Article  Google Scholar 

  • Tilman, D. (1982). Resource competition and community structure. Princeton: Princeton University Press.

    Google Scholar 

  • Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237, 5–72.

    MathSciNet  MATH  Google Scholar 

  • Wang, H., & Castillo-Chavez, C. (2012). Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete and Continuous Dynamical Systems - Series B, 17(6), 2243–2266.

    Article  MathSciNet  MATH  Google Scholar 

  • Wei, H., & Lutscher, F. (2013). From individual movement rules to population level patterns: The case of central-place foragers. In M. Lewis, P. Maini, & S. Petrovskii (Eds.), Dispersal, individual movement and spatial ecology. Lecture notes in mathematics (vol. 2071). Berlin: Springer.

    Google Scholar 

  • Weinberger, H. (1982). Long-time behavior of a class of biological models. SIAM Journal on Mathematical Analysis, 13, 353–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger, H., Lewis, M., & Li, B. (2002). Analysis of linear determinacy for spread in cooperative models. Journal of Mathematical Biology, 45, 183–218.

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger, H., Lewis, M., & Li, B. (2007). Anomalous spreading speeds of cooperative recursion systems. Journal of Mathematical Biology, 55(2), 207–222.

    Article  MathSciNet  MATH  Google Scholar 

  • White, S., & White, K. (2005). Relating coupled map lattices to integro-difference equations: Dispersal-driven instabilities in coupled map lattices. Journal of Theoretical Biology, 235, 463–475.

    Article  MathSciNet  Google Scholar 

  • Wright, R., & Hastings, A. (2007). Spontaneous patchiness in a host–parasitoid integrodifference model. Bulletin of Mathematical Biology, 69, 2693–2709.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Y., & Zhao, X.-Q. (2012). Bistable travelling waves in competitive recursion systems. Journal of Differential Equations, 252, 2630–2647.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutscher, F. (2019). Two Interacting Populations. In: Integrodifference Equations in Spatial Ecology. Interdisciplinary Applied Mathematics, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-29294-2_14

Download citation

Publish with us

Policies and ethics