Skip to main content

Ultrasound Diagnosis of Non-melanoma Skin Cancer and Malignant Melanoma

  • Chapter
  • First Online:
Image Guided Dermatologic Treatments

Abstract

Nowadays, ultrasound is an integral part of dermatologic clinical evaluation of skin cancer. The literature has demonstrated excellent ultrasound and histological correlation of the tumoral depth. Furthermore, ultrasound-guided biopsies and treatments are usually cost effective and can reduce morbidity. Almost pathognomonic ultrasound signs have been reported in basal cell carcinoma, the most common type of skin cancer in human beings. The depth of melanoma can be measured by ultrasound, which can provide a sonographic Breslow that has shown very good correlations with the histological depth. On color Doppler, the level of tumoral vascularity can also be detected and commonly correlates well with the neoplastic angiogenesis. Lastly, ultrasound supports the detection of the satellite, in-transit, and nonpalpable locoregional metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lassau N, Spatz A, Avril MF, et al. Value of high frequency US for preoperative assessment of skin tumors. Radiographics. 1997;17:247–56.

    Article  Google Scholar 

  2. Errico J, Pierre S, Pezet Y, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527:499–502.

    Article  CAS  Google Scholar 

  3. Wortsman X. Atlas of dermatologic ultrasound. Cham: Springer; 2018.

    Book  Google Scholar 

  4. Wortsman X. Sonography of facial cutaneous basal cell carcinoma. J Ultrasound Med. 2013;32:567–72.

    Article  Google Scholar 

  5. Bobadilla F, Wortsman X, Munoz C, et al. Pre-surgical high resolution ultrasound of facial basal cell carcinoma: correlation with histology. Cancer Imaging. 2008;8:163–72.

    Article  Google Scholar 

  6. Lassau N, Chami L, Chebil M, et al. Dynamic contrast enhanced ultrasonography and anti-angiogenic treatments. Discov Med. 2011;11:18–24.

    Google Scholar 

  7. Restreppo CS, Ocazionex D. Kaposi’s sarcoma: imaging overview. Semin Ultrasound CT MR. 2011;32:456–69.

    Article  Google Scholar 

  8. Tacke J, Haagen G, Horstein O, et al. Clinical relevance of sonographically derived tumour thickness in malignant melanoma. Br J Dermatol. 1995;132:209–14.

    Article  CAS  Google Scholar 

  9. Guitera P, Li PX, Crotty K, et al. Melanoma histological Breslow thickness predicted by 75MHz sonography. Br J Dermatol. 2008;159:364–9.

    Article  CAS  Google Scholar 

  10. Hoffman K, Jung J, el Gammal S, et al. Malignant melanoma in 20 MHz B-scan sonography. Dermatology. 1992;185:49–55.

    Article  Google Scholar 

  11. Catalano O, Siani A. Cutaneous melanoma: role of ultrasound in the assessment of locoregional spread. Curr Probl Diagn Radiol. 2010;39:30–6.

    Article  Google Scholar 

  12. Lassau N, Mercier S, Koscielny S, et al. Prognostic value of high frequency sonography and color Doppler for preoperative assessment of melanomas. Am J Roentgenol. 1999;172:457–61.

    Article  CAS  Google Scholar 

  13. Lassau N, Koscielny S, Avril MF, et al. Prognostic value of angiogenesis evaluated by high frequency and Doppler ultrasound for preoperative assessment of melanomas. Am J Roentgenol. 2002;178:1547–51.

    Article  Google Scholar 

  14. Lassau N, Spatz A, Avril MF, et al. Value of high frequency US for preoperative assessment of skin tumors. Radiographics. 1997;17:1559–65.

    Article  CAS  Google Scholar 

  15. Nicolaidou E, Mikrova A, Antoniou C, et al. Advances in Merkel cell carcinoma pathogenesis and management. Br J Dermatol. 2012;166:16–21.

    Article  CAS  Google Scholar 

  16. Pileri A Jr, Patrizi A, Agostinelli C, et al. Primary cutaneous lymphomas: a reprisal. Semin Diagn Pathol. 2011;28:214–33.

    Article  Google Scholar 

  17. Galper SL, Smith BD, Wilson LD. Diagnosis and management of mycosis fungoides. Oncology (Willison Park). 2010;24:491–501.

    Google Scholar 

  18. Bard R. Advances in image guided oncologic treatment. J Targ Ther Cancer. 2016;1:52–6.

    Google Scholar 

  19. Music MM, Hertl K, Kadivec M, et al. Preoperative ultrasound with 15 MHz probe reliably differentiates between melanoma thicker and thinner than 1 mm. J Eur Acad Dermatol Venereol. 2010;24:1105–8.

    CAS  PubMed  Google Scholar 

  20. Rossi CR, Mocellin S, Scagnet B, et al. The role of preoperative ultrasound in detecting lymph-node metastases before sentinel node biopsy in patients with melanoma. J Surg Oncol. 2003;83:80–4.

    Article  Google Scholar 

  21. Van Rijk MC, Teertstra HJ, Peterse JL, et al. Ultrasonography and fine needle aspiration cytology in the preoperative evaluation of patients with melanoma eligible for sentinel node biopsy. Ann Surg Oncol. 2006;13:1511–6.

    Article  Google Scholar 

  22. Ulrich J, van Akooi AC, Eggermont AM, et al. New developments in melanoma: utility of ultrasound imaging (initial staging). Expert Rev Anticancer Ther. 2011;11:1693–701.

    Article  Google Scholar 

  23. Voit C, van Akooi AC, Schafer G, et al. Ultrasound morphology criteria predict metastatic disease of the sentinel nodes in patients with melanoma. J Clin Oncol. 2010;28:847–52.

    Article  Google Scholar 

  24. Catalano O. Critical analysis of the ultrasound criteria for diagnosing lymph node metastases in patients with cutaneous melanoma. J Ultrasound Med. 2011;30:547–60.

    Article  Google Scholar 

  25. Que SK, Grant-Kels JM, Longo C, et al. Basics of confocal microscopy and the complexity of diagnosing skin tumors. Dermatol Clin. 2016;34:367–75.

    Article  CAS  Google Scholar 

  26. Gupta A, Forsberg M, Dulin K, et al. Comparing quantitative immunohistochemical markers of angiogenesis to contrast enhanced subharmonic imaging. J Ultrasound Med. 2016;35:1839–47.

    Article  Google Scholar 

  27. Rivers C, Singh A. Total skin electron beam therapy for mycosis fungoides revisited with adjuvant systemic therapy. Clin Lymphoma Myeloma Leuk. 2019;19:83–8.

    Article  Google Scholar 

  28. Glazer A, Rigel D, Winkelman R, et al. Clinical diagnosis of skin cancer. Derm Clinics. 2017;35:409–16.

    Article  CAS  Google Scholar 

  29. Balu M, Zachary C, Harris R, et al. In vivo multiphoton microscopy of basal cell carcinoma. JAMA Dermatol. 2015;151(10):1068–74.

    Article  Google Scholar 

  30. Hosking AM, Coakley B, Chang D, et al. Hyperspectral imaging in automated digital dermoscopy screening for melanoma. Lasers Surg Med. 2019;51(3):214–22.

    Article  Google Scholar 

  31. Iftimia N, et al. Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment. Biomed Opt Express. 2013;4(5):680–95.

    Article  Google Scholar 

  32. Altintas AA, et al. To heal or not to heal: predictive value of in vivo reflectance-mode confocal microscopy in assessing healing course of human burn wounds. J Burn Care Res. 2009;30(6):1007–12.

    PubMed  Google Scholar 

  33. Srivastava R, Reilly C, Francisco GM, Bhatti H, Rao BK. Life of a wound: serial documentation of wound healing after shave removal using reflectance confocal microscopy. J Drugs Dermatol. 2019;18(5):217–9.

    Google Scholar 

  34. Cameli N, Mariano M, Serio M, Ardigò M. Preliminary comparison of fractional laser with fractional laser plus radiofrequency for the treatment of acne scars and photoaging. Dermatol Surg. 2014;40(5):553–61.

    Article  CAS  Google Scholar 

  35. Stumpp OF, Bedi VP, Wyatt D, Lac D, et al. In vivo confocal imaging of epidermal cell migration and dermal changes post nonablative fractional resurfacing: study of the wound healing process with corroborated histopathologic evidence. J Biomed Opt. 2009;14(2):024018.

    Article  Google Scholar 

  36. Terhorst D, Maltusch A, Stockfleth E, Lange-Asschenfeldt S, et al. Reflectance confocal microscopy for the evaluation of acute epidermal wound healing. Wound Repair Regen. 2011;19(6):671–9.

    Article  Google Scholar 

  37. Lange-Asschenfeldt S, Bob A, Terhorst D, Ulrich M, et al. Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing. J Biomed Opt. 2012;17(7):076016.

    Article  Google Scholar 

  38. Rajadhyaksha M, Marghoob A, Rossi A, Halpern AC, Nehal KS. Reflectance confocal microscopy of skin in vivo: from bench to bedside. Lasers Surg Med. 2017;49(1):7–19.

    Article  Google Scholar 

  39. Catalano O, Roldan F, Varelli C, Bard R, et al. Skin cancer: findings and role of high resolution ultrasound. J Ultrasound. 2019; https://doi.org/10.1007/s40477-019-00379-0.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Bard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bard, R.L., Wortsman, X. (2020). Ultrasound Diagnosis of Non-melanoma Skin Cancer and Malignant Melanoma. In: Bard, R. (eds) Image Guided Dermatologic Treatments. Springer, Cham. https://doi.org/10.1007/978-3-030-29236-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29236-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29234-8

  • Online ISBN: 978-3-030-29236-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics