Skip to main content
  • 1339 Accesses

Abstract

The chemistry of ginger: The chapter discusses elaborately the composition of ginger rhizome; extraction, separation, and identification methods; and analytical and isolation methodology, such as liquid column chromatography, thin-layer chromatography, high-performance liquid chromatography, gas chromatography, and other GC (Cas chromatography) methods, such as dynamic headspace, GC artifacts, gas chromatography/mass spectrometry coupling, selected ion monitoring technique, chemical ionization technique, and other miscellaneous methods. Additionally, there is a discussion on oleoresins, such as gingerols, shogaols, and related compounds. Further discussion centers on synthesis and biosynthesis of pungent compounds of ginger rhizomes, including essential oils of ginger, and their physicochemical properties and chemical composition. There is a separate discussion of essential oils from India, China, and other Southeast Asian countries, including Japan. Also, there is a discussion on essential oil in ginger grown in countries such as Africa (Nigeria), Australia, Brazil, Poland, Mauritius, and Tahiti. Additionally, there is a discussion on essential oils in wild ginger. Further discussion centers on characteristic flavor and odor in ginger, chromometrics, synthesis of some authentic samples, and precursors of aroma and flavoring compounds. The last part of the chapter will dwell on properties of ginger, ginger processing like deterpenation, preservation and encapsulation, irradiation effects, and formulations and uses of ginger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achinewhu, S. C., Ogbonna, C. C., & Hart, A. D. (1995). Chemical composition of indigenous wild herbs, spices, fruits, nuts and leafy vegetables used as foods. Plant Foods for Human Nutrition, 48(4), 341–348. Dordrecht.

    Google Scholar 

  • Afzal, M., Al-Hadidi Menon, M., Pesek, J., & Dhami, M. S. (2001). Zinger: An ethno-medical, chemical and pharmacological review. Drug Metabolism and Drug Interactions, 18(3–4), 159–190.

    CAS  PubMed  Google Scholar 

  • Agarwal, M., Walia, S., Dhingra, S., & Khambay, B. P. S. (2001). Insect growth, inhibition, anti-feedant and antifungal activity of compounds isolated/derived from Zingiber officinale roscoe (ginger) rhizomes. Pest Management Science, 57(3), 289–300.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, N., Katiyar, S. K., & Mukhtar, H. (2001). Antioxidants in chemoprevention of the skin cancer. Current Problems in Dermatology, 29, 128–139.

    Article  CAS  PubMed  Google Scholar 

  • Ahn, B., Lee, D. H., Yeo, S. G., Kany, J. H., Do, J. R., Kim, S. B., et al. (1993). Inhibitory action of natural food components on the formation of carcinogenic nitrosomine. Bulletin of the Korean Fisheries Society, 26, 289–295.

    Google Scholar 

  • Akhila, A., & Tewari, P. (1984). Chemistry of ginger: A review. Current Research on Medicinal and Aromatic Plants, 6(3), 143–156.

    CAS  Google Scholar 

  • Alencar, J. W., Craveiro, A. A., & Matos, F. J. A. (1984). Kovats indices as a preselection routine in mass spectra library searches of volatiles. Journal of Natural Products, 47(3), 890–892.

    Article  CAS  Google Scholar 

  • Altman, R. D., & Marcussen, K. C. (2001). Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis & Rhematology, 44(11), 2531–2538.

    Article  CAS  Google Scholar 

  • Anderson, N. H., & Falcone, M. S. (1969). The identification of sesquiterpene hydrocarbons from GC retention data. Journal of Chromatography, 44, 52–59.

    Article  Google Scholar 

  • Andrews, I. S., Cadwallader, K. R., Grodner, R. M., & Chung, H. V. (1995). Chemical and microbial quality of irradiated ground ginger. Journal of Food Science, 60(4), 829–832.

    Article  CAS  Google Scholar 

  • Anzaldo, F. E., Coronel Violera, Q., Manalo, J. B., & Nuevo, C. R. (1986). Chemical components of local (Philippines) ginger oil. The National Institute of Science and Technology, 11(3), 11–19.

    CAS  Google Scholar 

  • Arimura, C. T., Finger, F. L., Casali, V., & W.D. (2000). Effect of NAA and BAP on ginger (Zingiber officinale roscoe) sprouting in solid and liquid medium. The Revista Brasileira de Plantas Medicinais, 2(2), 23–26.

    CAS  Google Scholar 

  • Association of Official Analytical Chemists (AOAC). (1984). Methods of analysis (14th ed.). Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  • Badalyan, A. G., Wilkinson, G. T., & Chun, B. S. (1998). Extraction of Australian ginger root with carbon dioxide and ethanol entrainer. Journal of Supercritical Fluids, 13(1–3), 319–324.

    Article  CAS  Google Scholar 

  • Balladin, D. A., & Headley, O. (1999). Liquid chromatographic analysis of the main pungent prin- ciples of solar dried west Indian ginger (Zingiber officinale roscoe.). Renewable Energy, 18(2), 257–261.

    Article  CAS  Google Scholar 

  • Bartley, J. P. (1995). A new method for the determination of pungent compounds in ginger (Zingiber officinale roscoe). Journal of the Science of Food and Agriculture, 68, 215–222.

    Article  CAS  Google Scholar 

  • Bartley, J. P., & Jacobs, A. L. (2000). Effects of drying on flavor compounds in Australian-grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture, 80(2), 209–215.

    Article  CAS  Google Scholar 

  • Bednarczyk, A. A. (1974). Identification and evaluation of the flavor-significant components of ginger essential oil. Dissertation Abstracts International B, 35(1), 306.

    Google Scholar 

  • Bednarczyk, A. A., & Kramer, A. (1975). Identification and evaluation of the flavor-significant components of ginger essential oil. Chemical Senses, 1(4), 377–386.

    Article  CAS  Google Scholar 

  • Bhattarai, S., Tran Van, H., & Duke, C. C. (2001). The stability of gingerol and shogaol in aqueous solutions. Journal of Pharmaceutical Sciences, 80(10), 1658–1664.

    Article  Google Scholar 

  • Bhonsle, J. B., Deshpande, V. H., & Ravindranathan, T. (1994). Synthesis of (+)-zingiberene. Indian Journal of Chemistry (Section B), 33B(4), 313–316.

    CAS  Google Scholar 

  • Bicchi, C., & Sandra, P. (1987). Capillary gas chromatography in essential oil analysis (C. Bicchi & P. Sandra, Eds., pp. 85–121) Heidelberg: Huethig Verlag.

    Google Scholar 

  • Birch, E. J. (1965). Reduction/hydrolysis of p-substituted phenols (Cited from Lewis, K. G., Williams, G. J. 1965). Tetrahedron Letters 4573 and Teisseire 1991.

    Google Scholar 

  • Boniface, C., Vernin, G., & Metzger, J. (1987). Identification informatisee de composes par ana- lyse combinee: Spctres de masse-indices de Kovats. Analusis, 15, 564–568.

    CAS  Google Scholar 

  • Breeden, D. C., & Coates, R. M. (1995). 7-Epizingiberene, a novel bisabolene sesquiterpene from wild tomato leaves (erratum to document cited in CA 121: 276729). Tetrahedron, 51(6), 1533.

    Google Scholar 

  • Brogle, H. (1982). Supercritical fluid CO2 extract. Chemistry and Industry, 12, 385–390.

    Google Scholar 

  • Bruins, A. P. (1987). Capillary gas chromatography in essential oil analysis (P. Sandra & C. Bicchi, Eds., pp. 329–357). Heidelberg: Huethig Verlag.

    Google Scholar 

  • Charles, R., Garg, S. N., & Kumar, S. (2000). New gingerdione from the rhizomes of Zingiber officinale. Fitoterapia, 71(6), 716–718.

    Article  CAS  PubMed  Google Scholar 

  • Chau, F. T., Mok, D. K. W., Gong, F., Tsui, S. K., Wong, S. K., Huang, L. Q., et al. (2001). Fingerprinting analysis of raw herb: Application of chromometrics techniques for finding out chemical fingerprint of Chinese herb. Analytical Sciences, 17(Suppl), 419–422.

    Google Scholar 

  • Chen, Y. H., & Guo, H. Z. (1980). A survey of the raw and dry ginger produced in Szechaun (China). Yao Hsueb Tung Pao, 15(10), 12–13.

    CAS  Google Scholar 

  • Chen, C. C., & Ho, C. T. (1988). GC analysis of volatile components of ginger oil (Zingiber officinale roscoe) extracted with liquid carbon dioxide. Journal of Agricultural and Food Chemistry, 36(2), 322–328.

    Article  CAS  Google Scholar 

  • Chen, C. C., Kuo, M. C., WU, C. M., & Ho, C. T. (1986). Ginger oil extracted by liquid carbon dioxide. Shib Pin ko Hsueb, 13(3–4), 188–197.

    CAS  Google Scholar 

  • Chen, Y., Li, Z., Xue, D., & Qi, L. (1987). Determination of volatile constituents of Chinese medicinal herbs by direct vaporization capillary gas chromatography–mass spectrometry. Analytical Chemistry, 59(5), 744–749.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Cai, T., Fu, L., & Shan, J. (2001). Improved high performance liquid chromatography (HPLC) determination of pungent constituents of ginger. Shipin Kexue (Beijing), 22(4), 60–63.

    Google Scholar 

  • Connell, D. W. (1970). Chemistry of the essential oil and oleoresin of ginger (Zingiber officinale). Flavour Industry, 10, 677–693.

    Google Scholar 

  • Connell, D. W. (1971). Chemical composition of certain products from ginger (Zingiber officinale). Australian Chemical and Process Engineering, 24(11), 27.

    CAS  Google Scholar 

  • Connell, D. W., & Jordan, R. A. (1971). Composition and distinctive volatile flavor characteristics of the essential oils from Australian-grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture, 22(2), 93–95.

    Article  CAS  Google Scholar 

  • Connell, D. W., & McLachlan, B. (1972). Natural pungent compounds IV examination of the gingerols, shogaols, paradol and related compounds by TLC and GC. Journal of Chromatography, 67(1), 29–35.

    Article  CAS  Google Scholar 

  • Connell, D. W., & Sutherland, M. D. (1969). A re-examination of gingerol, shogaol and zingerone, the pungent principles of ginger (Zingiber officinale roscoe). Australian Journal of Chemistry, 22, 1033–1043.

    Article  CAS  Google Scholar 

  • Dambatta, B. B., Kazaure, M. A., & Tapley, K. N. (1998). Extraction and characterization of essential oils from Nigerian ginger. Advances in Colour Science and Technology, 1(3), 80–82.

    CAS  Google Scholar 

  • Data, A., & Sukul, N. (1987). Antifilarial effect of Z. officinalis on Dirofilaria immitis. Journal of Helminthology, 61, 268–270.

    Article  Google Scholar 

  • De Pooter, H. L., Coolsack, B. A., Dirinck, P. J., & Schamp, N. M. (1985). GLC of the headspace after concentration on Tenax GC of the essential oils of apples, fresh celery, fresh lovage, honeysuckle and ginger extracts. In A. Berkeim, J. Sweden, & J. C. Scheffer (Eds.), Essential oils and aromatic plants. Dordrecht: Martinus Nijhoff/Dr W. Junk.

    Google Scholar 

  • Denyer, C., Jackson, P., Loakes, D. M., Ellis, M. R., & Young, D. A. (1994). Isolation of anti- rhinoviral sesquiterpenes from ginger (Zingiber officinale Rosc.). Journal of Natural Products, 57, 658–662.

    Article  CAS  PubMed  Google Scholar 

  • Ding, A., & Ding, Q. (1988). Comparison of the contents of main chemical constituents in differ- ent processed preparations of ginger. Zhongyao Tongbao, 13(11), 657–659.

    CAS  Google Scholar 

  • Dowdle, P. A., Corr, S., & Harris, H. (2002). Solvent extraction process. Patent WO 2002 036232 A1, date 20020510, Appl. WO 2001 GB4904.

    Google Scholar 

  • Duke, J. A. (1994). Biologically active compounds in important spices. In G. Charalambous (Ed.), Spices, herbs and edible fungi (Vol. 34, pp. 225–250). Amsterdam: Elsevier Science.

    Google Scholar 

  • Dung, N. X., Chin, T. D., & Leclercq, P. A. (1995). Chemical investigation of the aerial parts of Zingiber zerumbet (L.) Sm. From Vietnam. The Journal of Essential Oil Research, 7(2), 153–157.

    Article  CAS  Google Scholar 

  • Duve, R. N. (1980). Highlights on the chemistry and pharmacology of wild ginger (Zingiber zerumbet smith). Fiji Agricultural Journal, 42(1), 41–43.

    CAS  Google Scholar 

  • Ebwele, R. O., & Jimoh, A. A. (1988). Local processing of ginger: Prospects and problems proceedings of the first national ginger workshop (pp. 22–33). Umudike: National Root Crops Research Institute.

    Google Scholar 

  • Ekundayo, O., Laasko, I., & Hiltunen, R. (1988). Composition of ginger (Zingiber officinale roscoe) volatile oils from Nigeria. Flavour and Fragrance Journal, 3(2), 85–90.

    Article  CAS  Google Scholar 

  • El-Hamouly, M. M. A., & Mohamad. (2001). Phytochemical and biological evaluation of volatile constituents of Zizyphus phlembristi (L) wild leaves and flowering tops, cultivated in Egypt Al-Azhar. Journal of Pharmaceutical Sciences, 28, 370–379.

    CAS  Google Scholar 

  • Endo, K., Kanno, E., & Oshima, Y. (1990). Structures of antifungal diarylhepterones, ginger- enones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry, 29, 797–799.

    Article  CAS  Google Scholar 

  • Erler, J., Vostrowsky Strobel, H., & Knobloch, K. (1988). Essential oils from ginger (Zingiber officinale roscoe). Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 186(3), 231–234.

    Article  CAS  Google Scholar 

  • Fagbento, O., & Jauncey, K. (1994). Chemical and nutritional quality of fermented fish silage containing potato extracts, formalin or ginger. Food Chemistry, 50(4), 383–388.

    Article  Google Scholar 

  • Faulhaber, S., & Shirey, R. (1998). Solid-phase microextraction for the sampling in aromatic analysis. LaborPraxis, 22(5), 52. 55–58.

    CAS  Google Scholar 

  • Flisak, J. R., & Hall, S. S. (1986). Alkylation-reduction of carbonyl systems. 15. Efficient syntheses of beta-sesquiphellandrene and zingiberenol employing a tandem arylation-multistep reduction-hydrolysis sequence. Synthetic Communications, 16(10), 1217–1228.

    Article  CAS  Google Scholar 

  • Garnero, J., & Tabacchi, R. (1987). Examples of artifact formation by chromatographic tech- niques. In P. Sandra & C. Bicchi (Eds.), Capillary gas chromatography in essential oil analysis (pp. 359–366). Heidelberg: Huethig Verlag.

    Google Scholar 

  • Goku, K. (1983). Tablets as breath refreshners. Japan Kokai Tokyo Kobo Patent Jp 58,088, 308 A2, date 1983 05 26 Appl. JP 1981–185, 655.

    Google Scholar 

  • Gopalam, A., & Ratnambal, M. J. (1989). Essential oils of ginger. Indian Perfumer, 33(1), 63–69.

    CAS  Google Scholar 

  • Goto, C., Kasaya, S., Koga, K., Ohmoto, H., & Kagei, N. (1990). Lethal efficacy of extract from Z. officinale or (6)-shogaol and (6)-gingerol in Anisakis larvae in vitro. Parasitology, 10, 653–656.

    Article  Google Scholar 

  • Grosh, W. (1994). Determination of potent odorants in foods by aroma extract dilution analysis (AEDA) and calculation of odor quality values (COAVS). Flavour and Fragrance Journal, 9, 147–158.

    Article  Google Scholar 

  • Guenther, E. (1952). The essential oils, 2nd ed. Individual essential oils of the plant families (Vol. 5). New York: van Nostrand.

    Google Scholar 

  • Gujral, S., Bhumra, H., & Swaroop, M. (1978). Cholesterolemic activity of pungent principles of ginger. Nutrition Reports International, 17, 183–189.

    CAS  Google Scholar 

  • Guo, P., Xu, J., Xu, S., & Wang, K. (1997). Inhibition of fulvic acid-induced hydrogen peroxide production in chondrocyte by ginger volatile oil. Zbongguo Zbongyao Zasshi, 22(9), 559–561.

    CAS  Google Scholar 

  • Gurib-Fakim, A., Mandarbaccus, N., Leach, D., Doimo, L., & Wohlmuth, H. (2002). Essential oil composition of Zingiberaceae species from Mauritius. The Journal of Essential Oil Research, 14(4), 271–273.

    Article  CAS  Google Scholar 

  • Haq, F., Faruque, S. M., Islam, S., & Ali, E. (1986). Studies on Zingiber officinale roscoe. Part 1. Chemical investigation of the rhizome. Bangladesh Journal of Scientific and Industrial Research, 21(1–4), 61–69.

    Google Scholar 

  • Harrison, A. G. (1983). Chemical ionization mass spectrometry. Boca Raton: CRC Press.

    Google Scholar 

  • Harvey, D. J. (1981). Gas chromatographic studies of ginger constituents. Journal of Chromatography, 212, 75–84.

    Article  CAS  Google Scholar 

  • Hasnah, M. S., & Ahmad, A. R. 1993. Some important metabolites from Malaysian ginger. In N. A. Sharman (Ed.), Applications of plants in vitro technology (pp. 191–196). Proceedings of the international symposium, Serdand, Malaysia, 16–18 November 1993 Department of Biochem and Microbiology, Universiti Pertanian Malaysia, Serdang, Malaysia.

    Google Scholar 

  • He, W., Li, L., Guo, S., & Li, Y. (1999). Extraction of ginger oil and its anti-oxidative activity for edible oils and fats. Zbongguo Youzhi, 24(1), 42–44.

    CAS  Google Scholar 

  • He, W., Li, L., Li, Y., Guo, S., & Guo, B. (2001). Anti-oxidative activity of a new compound from ginger. Zbongguo Bingli Shenli Zashi, 17(5), 461–463.

    CAS  Google Scholar 

  • Heath, H. P., & Reineccius, G. (1988). Flavour chemistry and technology. Westport: Avi Publishing.

    Google Scholar 

  • Herout, V., Benesova, V., & Pliva, J. (1953). The sesquiterpenes of ginger oil. Cull Czeck Chemical Communications, 18, 248–256.

    Article  CAS  Google Scholar 

  • Hikino, H., Kiso, Y., Kato, N., Hamada, Y., Shiori, T., Aiyama, R., et al. (1985). Antihepatotoxic activity of gingerols and diarylheptanoids. Journal of Ethnopharmacology, 14, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Hill, C. E., Dowdle, P. A., & Corr, S. (1999). Solvent extraction process PCT. Int. Appl. WO 0064,555 (Cl B 01 D1/00), 2 Nov 2000. G.B.Appl. 1999/9, 136, 22 April 1999.

    Google Scholar 

  • Ho, C. T., Zhang Shi, H., & Tang, J. (1989). Flavor chemistry of Chinese foods. Food Review International, 5(3), 53–87.

    Article  Google Scholar 

  • Huang, X., Wang, J., & Zhang, X. (1999a). Essential oil of Zingiber officinalis. Huaxue Shijie, 30(9), 420–433.

    Google Scholar 

  • Huang, X., Wang, J., & Zhang, X. (1999b). Determination of the pungent principles in ginger powder, ginger skin and baked ginger. Zbongcaoyae, 30(6), 423–425.

    CAS  Google Scholar 

  • Hus, H. J., Chang, H. L., & Jian, N. (1999). Synergistic natural pesticides containing garlic. Eur. Pat. Appl. 945,066, A1, 1999 09 29, Appl. 1999-302.286 (EP) 17P. US 6231865, BI, 2001 05 15, Appl. 1999-273636.

    Google Scholar 

  • Ibrahim, H., & Zakaria, M. B. (1987). Essential oils from three Malaysian Zingiberaceae species. Malaysian Journal of Science, 9, 73–76.

    CAS  Google Scholar 

  • ISI. (1975). Specification for ginger oleoresin. New Delhi: Indian Standards Institution.

    Google Scholar 

  • Jain, T. C., Varma, K. R., & Bhattacharya, C. S. (1962). Terpenoids XXVII GLC analysis of monoterpenes and its application to essential oils. Perfume Essential Oil Research, 53, 678–684.

    CAS  Google Scholar 

  • James, A. T., & Martin, A. J. P. (1952). Gas liquid chromatography. Analysis, 77, 198.

    Google Scholar 

  • Jennings, W., & Shibamoto, T. (1980). Qualitative analysis of flavour and fragrances volatiles by glass capillary gas chromatography. New York: Academic.

    Google Scholar 

  • Jo, K. S. (2000). Analysis of gingerol compounds of raw ginger (Zingiber officinale roscoe.) and its paste to high performance liquid chromatography mass spectrometry (LC-MS). Hanguk Sikpum Yongyang Kwabak Hoechi, 29(5), 747–751.

    CAS  Google Scholar 

  • Joulain, D., & Konig, W. A. (1998). The atlas of spectral data sesquiterpene hydrocarbons. Hamburg: E.B. Verlag.

    Google Scholar 

  • Kami, T., Nakayama, N., & Hayashi, S. (1972). Volatile constituents of Zingiber officinale. Phytochemistry, 11, 3377–3381.

    Article  CAS  Google Scholar 

  • Kano, Y., Tanabe, M., & Yasuda, M. (1990). On the evaluation of the preparation of Chinese medicinal prescriptions (V): Diterpenes from Japanese ginger Kinto. Shoyakugaku Zasshi, 44(1), 55–57.

    CAS  Google Scholar 

  • Kawara, H. (1998). Insecticidal baits containing ginger oil against cockroach. Japan Kokat Tokyo, 4 p. No 10, 017,405, A2, 20 Jan 1998, 1996–172, 020.

    Google Scholar 

  • Kawashi, S., Morimitsu, Y., & Osawa, T. (1994). Chemistry of ginger components and inhibitory factors of the arachidonic acid cascade. In C. T. Ho, T. Osawa, M. T. Huang, & R. T. Rosen (Eds.), Food phytochemicals for cancer prevention II (ACS symposium series 547). Washington, DC: American Chemical Society.

    Google Scholar 

  • Kikuzaki, H. (2000). Ginger for drug and spice purposes. In G. O. Maza & B. Dave (Eds.), Herbs, botanicals and teas (pp. 75–105). Lancaster: Technomic Publishing.

    Google Scholar 

  • Kikuzaki, H., & Nakatami, N. (1996). Cyclic diarylheptanoids from rhizomes of Zingiber officinale. Phytochemistry, 43(1), 273–277.

    Article  CAS  Google Scholar 

  • Kim, D. S. H. I. (2001). Pharmaceutical composition with natural products or synthetic analogs which are useful in the prevention and treatment of beta-amyloid protein-induced disease PCT. International Patent Application WO 0,130, 335 A2 date 2001 05 03, Appl. WO 2000-US41, 436.

    Google Scholar 

  • Kim, J. S., Koh, M. S., Kim, Y. H., Kim, M. K., & Hong, J. S. (1991). Volatile flavor components of Korean ginger (Zingiber officinale roscoe.). Hanguk Sikpum Kwabakhoechi, 23(2), 141–149.

    Google Scholar 

  • Kim, M. K., Na, M. S., Hong, J., & Jung, S. T. (1992). Volatile flavor components of Korean ginger (Zingiber officinale roscoe) extracted with liquid carbon. Hanguk Nongbua Hakborchi, 35(1), 59–63.

    CAS  Google Scholar 

  • Kitamura, Y., & Naguno, Y. (2000). Purification and characterization of cysteine proteinase inhibitor from fresh ginger rhizome Kenkyu Kiyo-Tokyo Kasei Daigaku 2. Shizen Kagaku, 40, 53–56.

    CAS  Google Scholar 

  • Kiuchi, F., Shibuya, M., & Sankawa, U. (1982). Inhibitors of the biosynthesis of prostaglandins. Chemical and Pharmaceutical Bulletin Tokyo, 30, 754–757.

    Article  CAS  Google Scholar 

  • Kobayashi, M., Shoji, N., & Ohizumi, Y. (1987). Gingerol, a novel cardiotonic agent, activates the Ca2+ pumping ATPase in skeletal cardiac sarcoplasmic reticulum. Biochimica et Biophysica Acta, 903, 96–102.

    Article  CAS  PubMed  Google Scholar 

  • Koedam, A. (1987). Some aspects of essential oil preparation. In P. Sandra & C. Bicchi (Eds.), Capillary gas chromatography in essential oil analysis, 903 Biochem Biophys Acta (pp. 13–28). Heidelberg: Huethig Verlag.

    Google Scholar 

  • Koenig, W. A., Rieck, A., Hardt, I., Gehrcke, B., Kubeczka, K. H., & Muhle, H. (1994). Enantiomeric composition of the chiral constituents of essential oils. Part 2: Sesquiter- pene hydrocarbon. Journal of High Resolution Chromatography, 17(5), 315–320.

    Article  CAS  Google Scholar 

  • Kostrzewa, E., & Karwowska, K. (1976). Characteristics of a flavor and odor extract of ginger. Proceedings of Institute Laboratory Badav Przem Sozyw, 26(1), 63–73.

    CAS  Google Scholar 

  • Kovats, E. (1958). Gas chromatographic characterization of organic compounds I. Retention indexes of aliphatic halides, alcohols, aldehydes, and ketones. Helvetica Chimica Acta, 41, 1915–1932.

    Article  CAS  Google Scholar 

  • Kovats, E. (1965). Advances in chromatography (J. C. Giddings & R. A. Keller, Eds., pp. 119–127). New York: Marcel Dekker.

    Google Scholar 

  • Koya, K. M. A., Premkumar, T., & Gautam, S. S. S. (1988). Chemical control of shoot borer Dichocrocis punctiferalis Guen. on ginger Zingiber officinale roscoe. Journal of Plantation Crops, 16(1), 58–59.

    CAS  Google Scholar 

  • Krishnakantha, T., & Lokesh, B. (1993). Scavenging for superoxide anions by spice principles. Indian Journal of Biochemistry & Biophysics, 30, 133–134.

    CAS  Google Scholar 

  • Krishnamurthy, N., Nambudiri, E. S., Mathew, A. G., & Lewis, Y. S. (1970). Essential oils of ginger. Indian Perfumer, 14(1), 1–3.

    CAS  Google Scholar 

  • Lapworth. (1917). Cited from Connell and Sutherland, 1969.

    Google Scholar 

  • Lawrence, B. M. (1983). Recent studies on the oil of Zingiber officinale roscoe. Perfumer Flavours, 9, 2–40.

    Google Scholar 

  • Lee, C. Y., Chiou, J. W., & Chang, W. H. (1982). Labdane-type diterpene: Galanolactone. Journal of the Chinese Agricultural Chemical Society, 20, 61–67.

    CAS  Google Scholar 

  • Lewis, Y. S., Mathew, A. G., Nambudiri, E. S., & Krishnamurthy, N. (1972). Oleoresin ginger. Flavour Industry, 3(2), 78–81.

    CAS  Google Scholar 

  • Li, A. (1995). Spectrometric determination of gingerol in ginger oil condiments. Zbongguo Tiaoweipin, 11, 30–32.

    CAS  Google Scholar 

  • Li, J., Wang, Y., Ma, H., Hao, J., & Yang, H. (2001). Comparison of chemical components between dry and fresh Zingiber officinale. Zbongguo Zbongyao Zassbi, 26(11), 748–751.

    CAS  Google Scholar 

  • Lin, Z. K., & Hua, Y. F. (1987). Chemical constituents of the essential oil from Zingiber officinale roscoe. Sichuan Youji Huaxue, 6, 444–448.

    Google Scholar 

  • Ma, X., Gu, Y., & Fu, J. (1990). Biosynthesis of LTB4 and selection of its inhibitors. Baiquien Yike Daxue Xuebao, 16(3), 222–225.

    CAS  Google Scholar 

  • Macleod, A. J., & Pieris, N. M. (1984). Volatile aroma constituents of Sri Lankan ginger. Phytochemistry, 9, 353–359.

    Article  Google Scholar 

  • Martins, A. P., Salqueiro, L., Goncalves, M. J., de Cunha, A. P., Vila, R., Canigueral, S., et al. (2001). Essential oil composition and antimicrobial activity of three Zingiberaceae from S Tome Principe. Planta Medica, 67(6), 580–584.

    Article  CAS  PubMed  Google Scholar 

  • Masada, Y. (1976). Analysis of essential oils by gas chromatography and mass spectrometry (pp. 251–255). New York: Wiley.

    Google Scholar 

  • Masada, Y., Inoue, T., Hashimoto, K., Fujika, M., & Shiraki, K. (1973). Studies on the pungent principles of ginger (Zingiber officinale roscoe) by GC–MS. Yakugaku Zasshi, 93(3), 318–321.

    Article  CAS  PubMed  Google Scholar 

  • Masuda, T., Matsumura, H., Oyama, Y., & Takeda, Y. (1998). Synthesis of (+) cassumunins A and B, new cucuminoids antioxidants having protective activity on the living cell against oxi-dative damage. Journal of Natural Products, 61, 609–613.

    Article  CAS  PubMed  Google Scholar 

  • Mathew, A. G., Krishnamurthy, N., Nambudiri, E. S., & Lewis, Y. S. (1973). Oil Ginger. Flavour Industry, 4(5), 226–229.

    CAS  Google Scholar 

  • Meireles, M. A. A., & Nikolov, Z. I. (1994). Extraction and fractionation of essential oils with liquid carbon dioxide (LCO2). In G. Charlambous (Ed.), Spices, herbs and edible fungi (Vol. 34, pp. 171–199). Amsterdam: Elsevier Science.

    Google Scholar 

  • Meyer-Warnod, B. (1984). Natural essential oils. Perfumer and Flavour, 9, 93.

    Google Scholar 

  • Mitra, C. R. (1975). Important Indian spices III. Ginger (Zingiberaceae). Rechst Aromen Koerperpflegem, 25(6), 170.

    CAS  Google Scholar 

  • Molyneux, F. (1971). Ginger—A natural flavor essence. Australian Chemical and Process Engineering, 24(3), 29. 31, 33–34.

    Google Scholar 

  • Mosandhl, A. (1992). Capillary gas chromatography in quality assessment of flavours and fragrances. Journal of Chromatography, 624, 267–292.

    Article  Google Scholar 

  • Moyler, D. A., Browning, R. M., & Stephens, M. A. (1994). Carbon dioxide extraction of essential oils. In G. Charlambous (Ed.), Spices, herbs and edible fungi (Vol. 34, pp. 145–170). Amsterdam: Elsevier Science.

    Google Scholar 

  • Murakami, A., Nakamura, Y., Ohto, Y., Tanaka, T., Makita Koshimizu, K., & Ohigashi, H. (1999). Cancer preventive phytochemicals from tropical Zingiberaceae. In H. R. Whitaker (Ed.), Food for health in Pacific rim (pp. 125–133). International conference on food, science and technology. Turnbull: Food & Nutrition Press. 1997.

    Google Scholar 

  • Nakatani, N. (1995). Chemistry and properties of pungent compounds. Koryo, 185, 59–64.

    CAS  Google Scholar 

  • Nakatani, N., & Kikuzaki, H. (2002). Antioxidants in ginger family. ACS Symposium Series Quality Management of Nutraeceuticals, 803, 230–240.

    Article  CAS  Google Scholar 

  • Nakazawa, T., & Ohsawa, K. (2002). Metabolism of (6)-gingerol in rats. Life Sciences, 70(18), 2165–2175.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan, C. S., & Mathew, A. G. (1985). Chemical investigation on spice oils. Indian Perfumer, 29(1–2), 15–22.

    CAS  Google Scholar 

  • Natarajan, C. P., Bai, R. P., Krishnamurthy, M. N., Raghavan, B., Shankaracharya, N. B., Kuppuswamy, S., et al. (1972). Chemical composition of ginger varieties and dehydration studies on ginger. Journal of Food Science and Technology, 9(3), 120–124.

    CAS  Google Scholar 

  • Ney, K. H. (1990). Aromagrams of spices. Alimenta 29(5), 91–93, 95–100.

    Google Scholar 

  • Ni, M., Chen, Z., & Yan, B. (1988). Synthesis of optically active sesquiterpenes and exploration of their anti-fertility effect. Huadong Huagong Xueyuan, 14, 675–679.

    CAS  Google Scholar 

  • Nigam, I. C., & Levi, L. (1963). Column- and gas-chromatographic analysis of the oil of wild ginger. Identification and estimation of some new constituents. Canadian Journal of Chemistry, 41(7), 1726–1730.

    Article  CAS  Google Scholar 

  • Nigam, M. C., Nigam, I. C., Levi, L., & Handa, K. L. (1964). Essential oils and their constituents XXII. Detection of new trace components in oil of ginger. Canadian Journal of Chemistry, 42(11), 2610–2615.

    Article  CAS  Google Scholar 

  • Nishimura, O. (2001). Enantiomer separation of the characteristic odorants in Japanese fresh rhizomes of Zingiber officinale roscoe (ginger) using multi-dimensional GC system and confirmation of the odor character of each enantiomer by GC-olfactometry. Flavour and Fragrance Journal, 16(1), 13–18.

    Article  CAS  Google Scholar 

  • Nomura, H., & Tsurami, S. (1926). Structure of shogaol. Proceedings of Imperial Academy Tokyo, 2, 229.

    Article  CAS  Google Scholar 

  • Ohkubo, K., Tagaki, Y., Takatoku, H., Hori, K., Kumoku, H., & Shibuya, Y. (2000). Ceramide production-accelerating agent. European Patent Applications. EP 993,822 (CL. AK61K7/48) 19 Apr 2000 JP Appl. 1999/122,402 28 Apr 1999.

    Google Scholar 

  • Okwu, D. E. (2001). Evaluation of the chemical composition of indigenous spices and flavoring agents. Global Journal of Pure and Applied Sciences, 7(3), 455–459.

    Article  CAS  Google Scholar 

  • Onyenekwe, P. C., & Hashimoto, S. (1999). The composition of the essential oil of dried Nigerian ginger (Zingiber officinale). Z. Lebensm. Unters Forsch. Food Research and Technology, 209(6), 407–410.

    Article  CAS  Google Scholar 

  • Paquette, L. A., & Kinney, W. A. (1982). A new synthon for the regiospecific y-alkylation of 2-cyclohexenones. Application to the synthesis of zingiberenol and oxygenated bicyclo (3.3.1) nonanes. Tetrahedron Letters, 23(2), 131–134.

    Article  CAS  Google Scholar 

  • Pellerin, P. (1991). Supercritical fluid extraction of natural raw materials for the flavor and perfume industry. Perfumer Flavor, 16(4), 37–39.

    CAS  Google Scholar 

  • Pliva, J., Horak, M., Herout, V., & Sorm, F. (1960). T.I. Sesquiterpene, S10–S11 Sammlung der Spectrum und Physikalischen Konstanten. Berlin: Akademie Verlag.

    Google Scholar 

  • Prachi, S., Tilak, R., & Singh, B. M. (2002). Salicylic acid induced insensitivity to culture filtrate of Fusarium oxysporum f. sp. Zingiberi in the calli of Zingiber officinale roscoe. European Journal of Plant Pathology, 108(1), 31–39.

    Article  CAS  Google Scholar 

  • Purseglove, J. W., Brown, G. G., Green, C. L., & Robbins, S. R. J. (1981). Spices, vols I and II. New York: Longman.

    Google Scholar 

  • Rani, K. (1999). Cyclization of farnesyl pyrophosphate into sesquiterpenoids in ginger rhizomes (Zingiber officinale). Fitoterapia, 70(6), 568–574.

    Article  CAS  Google Scholar 

  • Rogacheva, S., Kuntcheva, M., Obretenov, T., & Vernin, G. (1998). Formation and structure of melanoidins in foods and model systems. In J. O’Brien, E. E. Nurstsen, M. J. C. Crabbe, & J. M. Ames (Eds.), The Maillard reaction in foods and medicine (pp. 89–93). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Rosella, M.A., de Pfirter, G.B., Mandrile, E.L., 1996. Ginger (Zingiber officinale roscoe Zingiberaceae): ethnopharmacognosy, cultivation, chemical composition and pharmacology. Acta Pharmaceutical Bonaerense 15 (1), 35–42.

    Google Scholar 

  • Roy, B. C., Goro, M., & Hirose, T. (1996). Extraction of ginger oil with supercritical carbon dioxide experiments and modeling. Industrial and Engineering Chemistry Research, 35, 607–612.

    Article  CAS  Google Scholar 

  • Sadtler Research Laboratories. (1985). The Sadtler standard gas chromatography retention index library. Philadelphia: Sadtler Research Laboratories Division of Bio-Rad Laboratories.

    Google Scholar 

  • Sane, R. T., Phadke, M., Hijli, P. S., Shah, M., & Patel, P. H. (1998). Geographical variation study on gingerol (a pungent principle from Zingiber officinale) and ginger oil, using HPTLC technique and accelerated stability study on gingerol from Zingiber officinale using HPTLC method. Indian Drugs, 35(1), 37–44.

    CAS  Google Scholar 

  • Sharma, R. K., Misra, B. P., Sarma, T. C., Bordoloi, A. K., Pathak, M. G., & Leclercq, P. A. (1997). Essential oils of Curcuma longa L. from Bhutan. Journal of Essential Oil Research, 9, 589–592.

    Article  CAS  Google Scholar 

  • Tanabe, T., Kami, T., & Hayashi. (1992). Volatile separated compounds obtained by SIM technique. Phytochemistry, 12, 3388–3390.

    Google Scholar 

  • Taveira, et al. (1997). Chemistry of the essential oil and oleoresin of ginger (Zingiber officinale). Flavor Industry, 10, 677–693.

    Google Scholar 

  • Thomson, E. H., Wolf, I. D., & Allen, C. E. (1974). Ginger rhizome: A new source of proteolytic enzyme. Journal of Food Science, 38, 652–655.

    Article  Google Scholar 

  • Toofanian, F., & Stegeman, H. (1988). Comparative effect of ethylene oxide and gamma irradiation of the chemical, sensory and microbial quality of ginger, cinnamon, fennel and fenugreek. Acta Alimentaria, 17(4), 271–281.

    CAS  Google Scholar 

  • Vahira-Lechat, I., Menut, C., Lamaty, G., & Bessiere, J. M. (1996). Huiles essentielles de Polynesie Francaise Rivista Ital. EPPOS, (Special Edition), pp. 627–638.

    Google Scholar 

  • Van Beek, T. A. (1991). Special methods for the essential oil of ginger. In H. F. Linkens & J. F. Jackson (Eds.), Modern methods of plant analysis: Essential oils and wax (Vol. 12, pp. 79–97). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Van Beek, T. A., Posthumus Lelyveld, G. P., Hoang, V. P., & Yen, B. T. (1987). Investigation of the essential oil of Vietnamese ginger. Phytochemistry, 26(11), 3005–3010.

    Article  Google Scholar 

  • Van den Dool, H., & Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. Journal of Chromatography, 11, 463–471.

    Article  Google Scholar 

  • Variyar, P. S., Gholap, A. S., & Thomas, P. (2000). Estimation of pungency in fresh ginger: A new fluorimetric assay. Journal of Food Composition and Analysis, 13(3), 219–225.

    Article  CAS  Google Scholar 

  • Varma, K. R., Jain, T. C., & Bhattacharya, S. C. (1962). Terpenoids. XXXIV. Structure and stereo chemistry of zingiberol and juniper camphor. Tetrahedron, 18, 974–984.

    Article  Google Scholar 

  • Verma, S. K., Singh, J., Khamesra, R., & Bordia, A. (1993). Effect of ginger on platelet aggregation in man. The Indian Journal of Medical Research, 98, 240–242.

    CAS  PubMed  Google Scholar 

  • Vernin, G. (1970). La Chromatographie en Couche Mince. Techniques et Applications en Chimie Organique. Dunod, Paris, Hungarian translation, originally published in 1970 as Vekonyreteg-Kromatographia: A Serves Kemiaban, Muskaki Konyvkiado, Budapest.

    Google Scholar 

  • Vernin, G. (Ed.). (1982). The chemistry of heterocyclic flavouring and aroma compounds. Chichester: Ellis Horwood.

    Google Scholar 

  • Vernin, G., & Parkanyi, C. (1994). Ginger oil (Zingiber officinale roscoe). In G. Charalambous (Ed.), Spices, herbs and edible fungi (Vol. 34, pp. 579–594). Amsterdam: Elsevier Science.

    Google Scholar 

  • Vernin, G., & Petitjean, M. (1982). Mass spectrometry of heterocyclic compounds used for flavourings. The chemistry of heterocyclic flavouring and aroma compounds (pp. 305–342). Chichester: Ellis Horwood.

    Google Scholar 

  • Vernin, G., Debrauwer, L., Vernin, G. M. F., Zamkostian, R. M., Metzger, J., Larice, J. L., et al. (1992). Heterocycles by thermal degradation of some Amadori intermediates. In G. Charalambous (Ed.), Off-flavours in foods and beverages (pp. 567–624). Amsterdam: Elsevier Science.

    Chapter  Google Scholar 

  • Wang, W. (2001). Antioxidant properties of four vegetables with sharp flavor. Shipin Yu Fajiao Gomgye, 27, 28–31.

    Google Scholar 

  • Wen, Z., Yu, D., & Lu, Q. (2001). Study on antioxidation of ginger oil in concentrated fish oil. Zbongguo Youzhi, 26(4), 58–60.

    CAS  Google Scholar 

  • Wenninger, J. A., Yates, R. L., & Dolinsky, M. (1967). High resolution infrared spectra of some naturally occurring sesquiterpene hydrocarbons. Journal of Association and Analytical Chemistry, 50(6), 1313–1335.

    CAS  Google Scholar 

  • Yamahara, J., Matsuda, H., Yamaguchi, S., Shimoda, H., Murakami, N., & Yoshikawa, M. (1995). Pharmacological study on ginger processing I. Antiallergic activity and cardiotonic action of gingerols and shogaols. Nature Medicine Tokyo, 49(1), 76–83.

    CAS  Google Scholar 

  • Zaidi, V. H., Variyar, P. S., & Gholap, A. S. (1992). Estimation of inorganic elements in trace amounts in ginger. Journal of Food Composition and Analysis, 9, 220–229.

    Google Scholar 

  • Zhu, L. F., Li, Y. H., Li, B. L., Ju, B. Y., & Zhang, W. L. (1995). Aromatic plants and essential constituents (Supplement I). South China Institute of Botany Chinese Academy of Sciences Hai Feng Publishing. Distributed by Peace Book Ltd., Hong Kong.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nair, K.P. (2019). The Chemistry of Ginger. In: Turmeric (Curcuma longa L.) and Ginger (Zingiber officinale Rosc.) - World's Invaluable Medicinal Spices. Springer, Cham. https://doi.org/10.1007/978-3-030-29189-1_16

Download citation

Publish with us

Policies and ethics