Skip to main content

Emulsifiers in Infant Nutritional Products

  • Chapter
  • First Online:

Abstract

Infant formulae are specially formulated milks for babies and young children. These important nutritional products are available in several forms including convenient ready-to-feed liquid products, concentrated liquid products and powders that are reconstituted for consumption. The formation and stabilisation of an oil-in-water (o/w) emulsion is an integral step in the manufacture of all of these products. The emulsion formed must maintain excellent stability throughout a long shelf life. This review reviews the roles of proteins and other surfactants in emulsion formation and subsequent emulsion stability. Dairy proteins together with low molecular weight food grade emulsifiers form a membrane that stabilize oil droplets against coalescence. Lecithin and mono-di-glycerides are the main non-protein emulsifiers used to enhance the stability of these products, particularly, ready-to-feed or concentrated liquid products. Lecithin may also be added to improve the wettability of spray dried powders upon reconstitution. The use of emulsifiers to reduce the susceptibility of emulsions to lipid oxidation is another consideration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agboola SO, Dalgleish DG (1996) Enzymatic hydrolysis of milk proteins used for emulsion formation. 1. Kinetics of protein breakdown and storage stability of the emulsions. J Agric Food Chem 44:3631–3636

    Article  CAS  Google Scholar 

  • Antipova AS, Semenova MG, Belyakova LE, Il’in MM (2001) On relationships between molecular structure, interaction and surface behaviour in mixture: small-molecule surfactant + protein. Colloids Surf B: Biointerfaces 21:217–230

    Article  CAS  PubMed  Google Scholar 

  • Aoki H, Taneyama O, Inami M (1980) Emulsifying properties of soy proteins: characteristics of 7S and 11S proteins. J Food Sci 45:534–538

    Article  CAS  Google Scholar 

  • Arts TJC, Laven J, van Voorst Vader F, Kwaaitaal T (1994) Zeta potentials of tristearoylglycerol crystals in olive oil. Colloid Surf A: Physicochem Eng Asp 85:149–158

    Article  CAS  Google Scholar 

  • Atkinson PJ, Dickinson E, Horne DS, Richardson RM (1995) Neutron reflectivity of adsorbed β-casein and β-lactoglobulin at the air/water interface. J Chem Soc Faraday Trans 91:2847–2854

    Article  CAS  Google Scholar 

  • Barfod NM, Krog N, Larsen G, Buchheim W (1991) Effects of emulsifiers on protein/fat interaction in ice-cream mix during ageing. 1. Quantitative analyses. Fat Sci Technol 93:24–29

    CAS  Google Scholar 

  • Berton C, Ropers MH, Viau M, Genot C (2011) Contribution of the interfacial layer to the protection of emulsified lipids against oxidation. J Agric Food Chem 59:5052–5061

    Article  CAS  PubMed  Google Scholar 

  • Berton-Carabin CC, Ropers MH, Genot C (2014) Lipid oxidation in oil‐in‐water emulsions: involvement of the interfacial layer. Compr Rev Food Sci Food Saf 13:945–947

    Article  CAS  Google Scholar 

  • Boode K, Walstra P (1993) Kinetics of partial coalescence in oil-in-water emulsions. In: Dickinson E, Walstra P (eds) Food colloids and polymers: stability and mechanical properties. Royal Society of Chemistry, Cambridge, pp 23–30

    Google Scholar 

  • Boyd JV, Mitchell JR, Irons L, Musselwhite PR, Sherman P (1973) The mechanical properties of milk protein films spread at the air-water interface. J Colloid Interface Sci 45:478–486

    Article  CAS  Google Scholar 

  • Britten M, Giroux HJ (1991) Emulsifying properties of whey protein and casein composite blends. J Dairy Sci 74:3318–3325

    Article  CAS  Google Scholar 

  • Brooksbank DV, Davidson CM, Horne DS, Leaver J (1993) Influence of electrostatic interactions on β-casein layers adsorbed on polystyrene lattices. J Chem Soc Faraday Trans 89:3419–3425

    Article  CAS  Google Scholar 

  • Brown EM, Sampugna J, Pfeffer PE, Carroll RJ (1982) Interaction of phosphatidylcholine with beta-lactoglobulin. Biophys J 37:71–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown EM, Carroll RJ, Pfeffer PE, Sampugna J (1983) Complex formation in sonicated mixtures of β-lactoglobulin and phosphatidylcholine. Lipids 18:111–118

    Article  CAS  Google Scholar 

  • Brun JM, Dalgleish DG (1999) Some effects of heat on the competitive adsorption of caseins and whey proteins in oil-in-water emulsions. Int Dairy J 9:323–327

    Article  CAS  Google Scholar 

  • Bueschelberger H-G (2004) Lecithins. In: Whitehurst RJ (ed) Emulsifiers in food technology. Blackwell Publishing Ltd., Chichester, pp 1–39

    Google Scholar 

  • Canadian Food & Drugs Act (2003) Part B. Food and Drug Regulations. Division 24. Foods for special dietary use. Department of Health, Ottawa

    Google Scholar 

  • Carver JD, Wu PY, Hall RT, Ziegler EE, Sosa R, Jacobs J, Baggs G, Auestad N, Lloyd B (2001) Growth of preterm infants fed nutrient-enriched or term formula after hospital discharge. Paediatrics 107:683–689

    Article  CAS  Google Scholar 

  • Charoen R, Jangchud A, Jangchud K, Harnsilawat T, Naivikul O, McClements DJ (2011) Influence of biopolymer emulsifier type on formation and stability of rice bran oil-in-water emulsions: Whey protein, gum arabic, and modified starch. J Food Sci 76:165–172

    Article  CAS  Google Scholar 

  • Chobert JM, Bertrand-Harb C, Nicolas MG (1988a) Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin. J Agric Food Chem 36:883–892

    Article  CAS  Google Scholar 

  • Chobert JM, Sitohy MZ, Whitaker JR (1988b) Solubility and emulsifying properties of caseins modified enzymatically by Staphylococcus aureus V8 protease. J Agric Food Chem 36:220–224

    Article  CAS  Google Scholar 

  • Courthaudon J-L, Dickinson E, Christie WW (1991) Competitive adsorption of lecithin and β-casein in oil-in-water emulsions. J Agric Food Chem 39:1365–1368

    Article  CAS  Google Scholar 

  • Courthaudon J-L, Girardet JM, Campagne S, Rouhier LM, Campagne S, Linden G, Lorient D (1999) Surface active and emulsifying properties of casein micelles compared to those of sodium caseinate. Int Dairy J 9:411–412

    Article  CAS  Google Scholar 

  • Dalgleish DG (1993) The sizes and conformations of the proteins in adsorbed layers of individual caseins on lattices and in oil-in-water emulsions. Colloids Surf B: Biointerfaces 1:1–8

    Article  CAS  Google Scholar 

  • Dalgleish DG (1996) Food emulsions. In: Sjöblom J (ed) Emulsions and emulsion stability. Marcel Dekker Inc., New York, pp 287–321

    Google Scholar 

  • Dalgleish DG, Goff HD, Brun JM, Luan B (2002) Exchange reactions between whey proteins and caseins in heated soya oil-in-water emulsion systems—overall aspects of the reaction. Food Hydrocolloids 16:303–311

    Article  CAS  Google Scholar 

  • Das KP, Kinsella JE (1990) Stability of food emulsions: physicochemical role of protein and nonprotein emulsifiers. Adv Food Nutr Res 34:81–129

    Article  CAS  Google Scholar 

  • Davies E, Dickinson E, Bee RD (2000) Shear stability of sodium caseinate emulsions containing monoglyceride and triglyceride crystals. Food Hydrocolloids 14:145–153

    Article  CAS  Google Scholar 

  • Davies E, Dickinson E, Bee RD (2001) Orthokinetic destabilization of emulsions by saturated and unsaturated mono-di-glycerides. Int Dairy J 11:827–836

    Article  CAS  Google Scholar 

  • de Feijter JA, Benjamins J, Tamboer M (1987) Adsorption displacement of proteins by surfactants in oil-in-water emulsions. Colloids Surf 27:243–266

    Article  Google Scholar 

  • Deep S, Ahluwalia JC (2001) Interaction of bovine serum albumin with anionic surfactants. Phys Chem Chem Phys 3:4583–4591

    Article  CAS  Google Scholar 

  • Dickinson E (1993) Proteins in solution and at interfaces. In: Goddard ED, Ananthapadmanabhan KP (eds) Interactions of surfactants with polymers and proteins. CRC Press, Boca Raton, FL, p 295

    Google Scholar 

  • Dickinson E (1995) Recent trends in food colloids research. In: Dickinson E, Lorient D (eds) Food macromolecules and colloids. Royal Society of Chemistry, Cambridge, p 1

    Chapter  Google Scholar 

  • Dickinson E (1997) Properties of emulsions stabilized with milk proteins: overview of some recent developments. J Dairy Sci 80:2607–2619

    Article  CAS  Google Scholar 

  • Dickinson E (2001) Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf B: Biointerfaces 20:197–210

    Article  CAS  PubMed  Google Scholar 

  • Dickinson E (2004) Properties of emulsions stabilized with milk proteins: overview of some recent developments. J Dairy Sci 80:2607–2619

    Article  Google Scholar 

  • Dickinson E, Gelin J-L (1992) Influence of emulsifier on competitive adsorption of αs-casein and β-lactoglobulin in oil-in-water emulsions. Colloids Surf B: Biointerfaces 63:329–335

    Article  CAS  Google Scholar 

  • Dickinson E, Iveson G (1993) Absorbed films of β-lactoglobulin and lecithin at the hydrocarbon-water and triglyceride-water interfaces. Food Hydrocolloids 6:533–541

    Article  CAS  Google Scholar 

  • Dickinson E, Matsumura Y (1991) Time-dependent polymerisation of b-lactoglobulin through disulphide bonds at the oil-water interface in emulsions. Int J Biol Macromol 13:26–30

    Article  CAS  PubMed  Google Scholar 

  • Dickinson E, Tanai S (1992) Protein displacement from the emulsion droplet surface by oil-soluble and water-soluble surfactants. J Agric Food Chem 40:179–183

    Article  CAS  Google Scholar 

  • Dickinson E, Rolfe SE, Dalgleish DG (1988) Competitive adsorption of αs1-casein and β-casein in oil-in-water emulsions. Food Hydrocolloids 2:397–405

    Article  CAS  Google Scholar 

  • Dickinson E, Mauffret A, Rolfe SE, Woskett CM (1989a) Adsorption at interfaces in dairy systems. J Soc Dairy Technol 42:18–22

    Article  Google Scholar 

  • Dickinson E, Narhan SK, Stainsby G (1989b) Stability of cream liqueurs containing low-molecular-weight surfactants. J Food Sci 54:77–81

    Article  CAS  Google Scholar 

  • Dickinson E, Horne DS, Richardson RM (1993a) Neutron reflectivity study of the competitive adsorption of β-casein and water-soluble surfactant at the planar air-water interface. Food Hydrocolloids 7:497–505

    Article  CAS  Google Scholar 

  • Dickinson E, Owusu RK, Tan S, Williams A (1993b) Oil-soluble surfactants have little effect on competitive adsorption of alpha-lactalbumin and beta-lactoglobulin in emulsions. J Food Sci 58:295–298

    Article  CAS  Google Scholar 

  • Dickinson E, Owusu RK, Williams A (1993c) Orthokinetic destabilization of a protein-stabilized emulsion by a water-soluble surfactant. J Chem Soc Faraday Trans 89:865–866

    Article  CAS  Google Scholar 

  • Dickinson E, Golding M, Povey MJW (1997) Creaming and flocculation of oil-in-water emulsions containing sodium caseinate. J Colloid Interface Sci 185:515–529

    Article  CAS  PubMed  Google Scholar 

  • Doxastakis G, Sherman P (1984) The interaction of sodium caseinate with monoglyceride and diglyceride at the oil-water interface and its effect on interfacial rheological properties. Colloid Polym Sci 264:254–259

    Article  Google Scholar 

  • Drapala KP, Auty MA, Mulvihill DM, O’Mahony JA (2015) Influence of lecithin on the processing stability of model whey protein hydrolysate-based infant formula emulsions. Int J Dairy Technol 68:322–333

    Article  CAS  Google Scholar 

  • Eaglesham A, Herrington TM, Penfold J (1992) A neutron reflectivity study of a spread monolayer of bovine serum albumin. Colloids Surf 65:9

    Article  CAS  Google Scholar 

  • Euston SR (1997) Emulsifiers in dairy products and dairy substitutes. In: Hassenheutl GL, Hartel R (eds) Food emulsifiers and their applications. Chapman & Hall, New York, pp 173–210

    Chapter  Google Scholar 

  • Euston SR, Hirst RL (1999) Comparison of the concentration-dependent emulsifying properties of protein products containing aggregated and non-aggregated milk protein. Int Dairy J 9:693–701

    Article  CAS  Google Scholar 

  • Euston SR, Hirst RL (2000) The emulsifying properties of commercial milk protein products in simple oil-in-water emulsions and in a model food system. J Food Sci 65:934–940

    Article  CAS  Google Scholar 

  • Euston SE, Singh H, Munro PA, Dalgleish DG (1995) Competitive adsorption between sodium caseinate and oil-soluble and water-soluble surfactants in oil-in-water emulsions. J Food Sci 60:1124–1131

    Article  CAS  Google Scholar 

  • Euston SR, Finnigan SR, Hirst RL (2001a) Aggregation kinetics of heated whey protein-stabilized emulsions: effect of low-molecular weight emulsifiers. Food Hydrocolloids 15:253–262

    Article  CAS  Google Scholar 

  • Euston SR, Finnigan SR, Hirst RL (2001b) Heat-induced destabilization of oil-in-water emulsions formed from hydrolyzed whey protein. J Agric Food Chem 49:5576–5583

    Article  CAS  PubMed  Google Scholar 

  • Faergemand M, Krog N (2003) Using emulsifiers to improve food texture, Chapter 10. In: McKenna BM (ed) Texture in foods. Semi-solid foods, vol 1. CRC Press, Boca Raton, FL

    Google Scholar 

  • Fang Y, Dalgleish DG (1993) Casein adsorption on the surfaces of oil-in-water emulsions modified by lecithin. Colloids Surf 1:357–364

    Article  CAS  Google Scholar 

  • Fang Y, Dalgleish DG (1996a) Comparative effects of three different phosphatidylcholines on casein-stabilized oil-in-water emulsions. J Am Oil Chem Soc 73:437–442

    Article  CAS  Google Scholar 

  • Fang Y, Dalgleish DG (1996b) Competitive adsorption between dioleoylphosphatidylcholine and sodium caseinate on oil-water interfaces. J Agric Food Chem 44:59–64

    Article  CAS  Google Scholar 

  • Fontecha J, Swaisgood H (1994) Interaction of sucrose esters with skim milk proteins as characterised by affinity chromatography. J Dairy Sci 77:3545–3551

    Article  CAS  Google Scholar 

  • Fontecha J, Swaisgood H (1995) Interaction of sucrose esters with skim milk proteins as characterised by size-exclusion chromatography. J Dairy Sci 78:2660–2665

    Article  CAS  Google Scholar 

  • Forny L, Marabi A, Palzer S (2011) Wetting, disintegration and dissolution of agglomerated water soluble powders. Powder Technol 206:72–78

    Article  CAS  Google Scholar 

  • Friberg SE, Solans C (1986) Surfactant association structures and the stability of emulsions and foams. Langmuir 2:121–126

    Article  CAS  Google Scholar 

  • FSANZ (2000) Australia and New Zealand Food Standards Code. Standard 2.9.1. Infant formula products. FSANZ, Canberra

    Google Scholar 

  • García-Moreno PJ, Horn AF, Jacobsen C (2014) Influence of casein–phospholipid combinations as emulsifier on the physical and oxidative stability of fish oil-in-water emulsions. J Agric Food Chem 62:1142–1152

    Article  PubMed  CAS  Google Scholar 

  • Gaupp R, Adams W (2004) Acid esters of mono- and diglycerides. In: Whitehurst RJ (ed) Emulsifiers in food technology. Blackwell Publishing Ltd., Chichester, pp 59–85

    Chapter  Google Scholar 

  • Gelin J-L, Poyen L, Courthaudon J-L, Le Meste M, Lorient D (1994) Structural changes in oil-in-water emulsions during the manufacture of ice cream. Food Hydrocolloids 8:299–308

    Article  CAS  Google Scholar 

  • Haahr A-M, Jacobsen C (2008) Emulsifier type, metal chelation and pH affect oxidative stability of n-3-enriched emulsions. Eur J Lipid Sci Technol 110:949–961

    Article  CAS  Google Scholar 

  • Hamilton RJ, Kalu C, McNeill GP, Padley FB, Pierce JH (1998) Effects of tocopherols, ascorbyl palmitate, and lecithin on autoxidation of fish oil. J Am Oil Chem Soc 75:813–822

    Article  CAS  Google Scholar 

  • Hammes MV, Englert AH, Noreña CPZ, Cardozo NSM (2015) Study of the influence of soy lecithin addition on the wettability of buffalo milk powder obtained by spray drying. Powder Technol 277:237–243

    Article  CAS  Google Scholar 

  • Haque ZU, Mozaffar Z (1992) Casein hydrolysate. II. Functional properties of peptides. Food Hydrocolloids 5:559–571

    Article  CAS  Google Scholar 

  • Hardy EE, Sweetsur AWM, West IG, Muir DD (1985) Heat stability of concentrated milk: enhancement of initial heat stability by incorporation of food grade lecithin. Aust J Food Technol 20:97–105

    Article  CAS  Google Scholar 

  • Hasenhuettl GL (1997) Overview of food emulsifiers. In: Hasenhuettl GL, Hartel RW (eds) Food emulsifiers and their applications. Chapman & Hall, New York

    Chapter  Google Scholar 

  • Horn AF, Nielsen NS, Andersen U, Søgaard LH, Horsewell A, Jacobsen C (2011) Oxidative stability of 70% fish oil-in-water emulsions: Impact of emulsifiers and pH. Eur J Lipid Sci Technol 113:1243–1257

    Article  CAS  Google Scholar 

  • Horn AF, Wulff T, Nielsen NS, Jacobsen C (2013) Effect of α-lactalbumin and β-lactoglobulin on the oxidative stability of 10% fish oil-in-water emulsions depends on pH. Food Chem 141:574–581

    Article  CAS  PubMed  Google Scholar 

  • Istarova TA, Semenova MG, Sorokoumova GM, Selishcheva AA, Belyakova LE, Polikarpov YN, Anokhina MS (2005) Effect of pH on the interactions of sodium caseinate with soy phospholipids in relation to the foaming ability of their mixtures. Food Hydrocolloids 19:429–440

    Article  CAS  Google Scholar 

  • Jimenez-Flores R, Ye A, Singh H (2005) Interactions of whey proteins during heat treatment of oil-in-water emulsions formed with whey protein isolate and hydroxylated lecithin. J Agric Food Chem 53:4213–4219

    Article  CAS  PubMed  Google Scholar 

  • Joos P, Serrien G (1991), The principle of Braun-Le Châtelier at surfaces. J. Colloid Interface Sci. 145.

    Google Scholar 

  • Judde A, Villeneuve P, Rossignol-Castera A, Le Guillou A (2003) Antioxidant effect of soy lecithins on vegetable oil stability and their synergism with tocopherols. J Am Oil Chem Soc 80:1209–1215

    Article  CAS  Google Scholar 

  • Kieseker FG (1983) Recombined dairy products. CSIRO Food Res Quart 43:25–37

    Google Scholar 

  • Korver O, Meder H (1974) The influence of lysolecithin on the complex formation between beta-lactoglobulin and kappa-casein. J Dairy Res 41:9–17

    Article  CAS  PubMed  Google Scholar 

  • Kristensen A, Nylander T, Paulsson M, Carlsson A (1997) Calorimetric studies of interactions between β-lactoglobulin and phospholipids in solution. Int Dairy J 7:87–92

    Article  CAS  Google Scholar 

  • Krog N, Larsson K (1992) Crystallization at interfaces in food emulsions—a general phenomenon. Fat Sci Technol 94:55–57

    CAS  Google Scholar 

  • Lajoie N, Gauthier SF, Pouliot Y (2001) Improved storage stability of model infant formula by whey peptides fractions. J Agric Food Chem 49:1999–2007

    Article  CAS  PubMed  Google Scholar 

  • Lallbeeharry P, Tian Y, Fu N, Wu WD, Woo MW, Selomulya C, Chen XD (2014) Effects of ionic and nonionic surfactants on milk shell wettability during co-spray-drying of whole milk particles. J Dairy Sci 97:5303–5314

    Article  CAS  PubMed  Google Scholar 

  • Lam RS, Nickerson MT (2015) The effect of pH and temperature pre-treatments on the structure, surface characteristics and emulsifying properties of alpha-lactalbumin. Food Chem 173:163–170

    Article  CAS  PubMed  Google Scholar 

  • Leaver J, Dalgleish DG (1992) Variations in the binding of β-casein to oil-water interfaces detected by trypsin-catalysed hydrolysis. J Colloid Interface Sci 149:49–55

    Article  CAS  Google Scholar 

  • Leermakers FAM, Atkinson PJ, Dickinson E, Horne DS (1996) Self-consistent-field modelling of adsorbed β-casein: effects of pH and ionic strength on surface coverage and density profile. J Colloid Interface Sci 178:681–693

    Article  CAS  Google Scholar 

  • Lefévre T, Subirade M (2001) Molecular structure and interaction of biopolymers as viewed by Fourier transform infrared spectroscopy: model studies on β-lactoglobulin. Food Hydrocolloids 15:365–376

    Article  Google Scholar 

  • Lein E (2003) Infant formulae with increased concentrations of α-lactalbumin. Am J Clin Nutr (Suppl) 77:1555S–1558S

    Article  Google Scholar 

  • Let MB, Jacobsen C, Sørensen A-DM, Meyer AS (2007) Homogenization conditions affect the oxidative stability of fish oil enriched milk emulsions: Lipid oxidation. J Agric Food Chem 55:1773–1780

    Article  CAS  PubMed  Google Scholar 

  • Lönnerdal B (2014) Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas. Am J Clin Nutr 99:712S–717S

    Article  PubMed  CAS  Google Scholar 

  • Lucas A, Fewtrell MS, Morley R et al (2001) Randomized trial of nutrient-enriched formula versus standard formula for post discharge preterm infants. Paediatrics 108:703–711

    Article  CAS  Google Scholar 

  • Mackie AR, Gunning AP, Wilde PJ, Morris VJ (2000) Orogenic displacement of protein from the oil/water interface. Langmuir 16 (5), 2242–224

    Article  CAS  Google Scholar 

  • Mahmoud MI (1987) Enteral nutritional hypoallergenic formula. US Patent 4,670,268

    Google Scholar 

  • Masters K (2002) Spray drying in practice. Charlottenlund, SprayDryConsult International ApS

    Google Scholar 

  • McCarthy NA, Kelly AL, O’Mahony JA, Hickey DK, Chaurin V, Fenelon MA (2012) Effect of protein content on emulsion stability of a model infant formula. Int Dairy J 25:80–86

    Article  CAS  Google Scholar 

  • McCarthy NA, Kelly AL, O’Mahony JA, Fenelon MA (2014) Sensitivity of emulsions stabilised by bovine β-casein and lactoferrin to heat and CaCl2. Food Hydrocolloids 35:420–428

    Article  CAS  Google Scholar 

  • McClements DJ (2004) Protein stabilized emulsions. Curr Opin Colloid Interface Sci 9:305–313

    Article  CAS  Google Scholar 

  • McClements DJ (2005) In: McClements DJ (ed) Food emulsions, principles, practice and techniques, 2nd edn. CRC Press, Boca Raton, FL, Chapter 4

    Google Scholar 

  • McCrae CH, Muir DD (1992) The influence of phospholipid classes of crude lecithin on the heat stability of recombined milk. Milchwissenschaft 47:755–759

    CAS  Google Scholar 

  • McSweeney SL (2007) Stability of model ready-to-feed infant formula emulsions, PhD thesis. National University of Ireland, Cork

    Google Scholar 

  • McSweeney SL, Mulvihill DM, O’Callaghan DM (2004) The influence of pH on the heat-induced aggregation of model milk protein ingredient systems and model infant formula emulsions stabilized by milk protein ingredients. Food Hydrocolloids 18:109–125

    Article  CAS  Google Scholar 

  • McSweeney SL, Healy R, Mulvihill DM (2008) Effect of lecithin and monoglycerides on the heat stability of a model infant formula emulsion. Food Hydrocolloids 22:888–898

    Article  CAS  Google Scholar 

  • Mellema M, Isenbart JG (2004) Effect of acidification and heating on the rheological properties of oil-water interfaces with adsorbed milk proteins. J Dairy Sci 87:2769–2778

    Article  CAS  PubMed  Google Scholar 

  • Millqvist-Fureby A, Smith P (2007) In-situ lecithination of dairy powders in spray-drying for confectionery applications. Food Hydrocolloids 21:920–927

    Article  CAS  Google Scholar 

  • Mitidieri FE, Wagner JR (2002) Coalescence of o/w emulsions stabilized by whey and isolate soybean proteins. Influence of thermal denaturation, salt addition and competitive interfacial adsorption. Food Res Int 35:547–557

    Article  CAS  Google Scholar 

  • Miura S, Yamamoto A, Sato K (2002) Effect of monoacylglycerols on the stability of model cream using palm oil. Eur J Lipid Sci Technol 104:819–824

    Article  CAS  Google Scholar 

  • Moonen H, Bas H (2004) Mono- and diglycerides. In: Whitehurst RJ (ed) Emulsifiers in food technology. Blackwell Publishing Ltd., Chichester, pp 40–58

    Chapter  Google Scholar 

  • Munk MB, Larsen FH, van den Berg FW, Knudsen JC, Andersen ML (2014) Competitive displacement of sodium caseinate by low-molecular-weight emulsifiers and the effects on emulsion texture and rheology. Langmuir, 29, 8687-96.

    Article  CAS  PubMed  Google Scholar 

  • Mulvihill DM, Murphy PC (1991) Surface active and emulsifying properties of caseins/caseinates as influenced by state of aggregation. Int Dairy J 1:13–37

    Article  CAS  Google Scholar 

  • Nasner A (1985) Antioxidizing properties of lecithin. In: Marcuse R (ed) Lipid oxidation: proceedings of symposium lipid forum, Goteborg, pp 187–197

    Google Scholar 

  • Nelen BAP, Cooper JM (2004) Sucrose esters. In: Whitehurst RJ (ed) Emulsifiers in food technology. Blackwell Publishing Ltd., Chichester, pp 131–158

    Chapter  Google Scholar 

  • O’Callaghan DM, Wallingford JC (2002) Infant formulae—new developments. In: Roginshki H, Fuquay J, Fox PF (eds) Encyclopaedia of dairy science, vol 3. Academic, Elsevier Science, London, pp 1384–1392

    Chapter  Google Scholar 

  • Olson DW, White CH, Richter RL (2004) Effect of pressure and fat content on particle sizes in microfluidized milk. J Dairy Sci 87:3217–3223

    Article  CAS  PubMed  Google Scholar 

  • Oortwijn H, Walstra P (1979) Membranes of recombined fat globules. 2. Composition. Netherlands Milk Dairy J 33:134–154

    CAS  Google Scholar 

  • Oortwijn H, Walstra P (1982) Membranes of recombined fat globules. 4. Effects on properties of recombined milks. Netherlands Milk Dairy J 36:279–290

    CAS  Google Scholar 

  • Palazolo GG, Mitidieri FE, Wagner JR (2003) Relationship between interfacial behaviour of native and denatured soybean isolates and microstructure and coalescence of oil-in-water emulsions – effect of salt and protein concentration. Food Sci Technol Int 9:409–411

    Article  CAS  Google Scholar 

  • Pelan BMC, Watts KM, Campbell IJ, Lips A (1997) On the stability of aerated milk protein emulsions in the presence of small-molecule surfactants. In: Dickinson E, Bergenstahl B (eds) Food colloids: proteins, lipids and polysaccharides. Royal Society of Chemistry, Cambridge, p 55

    Google Scholar 

  • Pisecky J (1997) Handbook of milk powder manufacture. Niro A/S, Copenhagen

    Google Scholar 

  • Pouliot Y, Britten M, Latreille B (1990) Effect of high-pressure homogenization on a sterilized infant formula – microstructure and age gelation. Food Struct 9:1–8

    Google Scholar 

  • Rahali V, Chobert JM, Haertle T, Gueguen J (2000) Emulsification of chemical and enzymatic hydrolysates of β-lactoglobulin: characterization of the peptides adsorbed at the interface. Nahrung 44:89–95

    Article  CAS  PubMed  Google Scholar 

  • Regulation (EC) No. 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. OJ L 354, 31.12.2008, pp 16–33

    Google Scholar 

  • Rydhag L, Wilton I (1981) The function of phospholipids of soybean lecithin in emulsions. J Am Oil Chem Soc 58:830–837

    Article  CAS  Google Scholar 

  • Sarkar A, Singh H (2016) Emulsions and foams stabilised by milk proteins. In: Advanced dairy chemistry. Springer, New York, pp 133–153

    Chapter  Google Scholar 

  • Sarker DK, Wilde PJ, Clark DC (1995) Control of surfactant-induced destabilization of foams through polyphenol-mediated protein-protein interactions. J Agric Food Chem 43:295–300

    Article  CAS  Google Scholar 

  • Schmelz T, Lesmes U, Weiss J, McClements DJ (2011) Modulation of physicochemical properties of lipid droplets using β-lactoglobulin and/or lactoferrin interfacial coatings. Food Hydrocolloids 25:1181–1189

    Article  CAS  Google Scholar 

  • Schubert H (1993) Instantization of powdered food products. Int Chem Eng 33:28–45

    Google Scholar 

  • Schuck P (2002) Spray drying of dairy products: state of the art. Lait 82:375–382

    Article  Google Scholar 

  • Scientific Committee for Food, European Commission (1994) Opinion on certain additives for use in infant formulae, follow-on formulae and weaning foods. Reports of the Scientific Committee for Food (32nd series). Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Sharma R, Dalgleish DG (1993) Interactions between milk serum proteins and synthetic fat globule membrane during heating of homogenized whole milk. J Agric Food Chem 41:1407–1412

    Article  CAS  Google Scholar 

  • Sharma R, Singh H (1998) Adsorption behaviour of commercial milk protein and milk powder products in low-fat emulsions. Milchwissenschaft 53:373–377

    CAS  Google Scholar 

  • Shimazaki KI, Kawaguchi A, Sato T, Ueda Y, Tomimura T, Shimamura S (1993) Analysis of human and bovine milk lactoferrins by Rotofor and chromatofocusing. Int J Biochem 25:1653–1658

    Article  CAS  PubMed  Google Scholar 

  • Singh H (2011) Aspects of milk-protein-stabilised emulsions. Food Hydrocolloids 25:1938–1944

    Article  CAS  Google Scholar 

  • Singh H, Sharma R, Tokley RP (1992) Influence of incorporation of soya lecithin into skim milk powder on the heat stability of recombined evaporated milk. Aust J Dairy Technol 47:33–37

    CAS  Google Scholar 

  • Sjollema A (1987) Recombination of milk and dairy ingredients into milk, cream, condensed milk and evaporated milk. Milk—the vital force. Reidel Publishing, Boston, MA, pp 251–257

    Google Scholar 

  • Slattery H, Fitzgerald RJ (1998) Functional properties and bitterness of sodium caseinate hydrolysates prepared with a Bacillus proteinase. J Food Sci 63:418–422

    Article  CAS  Google Scholar 

  • Sliwinski EL, Lavrijsen BWM, Vollenbroek JM, van der Stege HJ, van Boekel MAJS, Wouters JTM (2003) Effects of spray drying on physicochemical properties of milk protein-stabilised emulsions. J Colloids Surf B: Biointerfaces 31:219–229

    Article  CAS  Google Scholar 

  • Sourdet S, Relkin P, Fosseux PY, Aubry V (2002) Composition of fat protein layer in complex food emulsions at various weight ratios of casein-to-whey proteins. Lait 82:567–578

    Article  CAS  Google Scholar 

  • Srinivasan M, Singh H, Munro PA (1996) Sodium caseinate-stabilized emulsions: Factors affecting coverage and composition of surface proteins. J Agric Food Chem 44:3807–3811

    Article  CAS  Google Scholar 

  • Stauffer CE (1999) Emulsifiers. Eagan Press Handbook, St. Paul, MA, pp 551–553

    Book  Google Scholar 

  • Sunder A, Scherze I, Muschiolik G (2001) Physico-chemical characteristics of oil-in-water emulsions based ion whey protein-phospholipid mixtures. Colloids Surf B: Biointerfaces 21:75–85

    Article  CAS  PubMed  Google Scholar 

  • Sweedman MC, Tizzottia MJ, Schäferb C, Gilberta RJ (2013) Structure and physicochemical properties of octenyl succinic anhydride modified starches: a review. Carbohydr Polym 92:905–920

    Article  CAS  PubMed  Google Scholar 

  • Taherian AR, Fustier P, Ramaswamy HS (2006) Effect of added oil and modified starch on rheological properties, droplet size distribution, opacity and stability of beverage cloud emulsions. J Food Eng 77:687–696

    Article  CAS  Google Scholar 

  • Tesch S, Gerhards C, Schubert H (2002) Stabilization of emulsions by OSA starches. J Food Eng 54:167–174

    Article  Google Scholar 

  • Tian Y, Fu N, Wu WD, Zhu D, Huang J, Yun S, Chen XD (2014) Effects of co-spray drying of surfactants with high solids milk on milk powder wettability. Food Bioprocess Technol 7:3121–3135

    Article  CAS  Google Scholar 

  • Tirok S, Scherze I, Muschiolik G (2001) Behaviour of formula emulsions containing hydrolysed whey protein and various lecithins. Colloids Surf B: Biointerfaces 21:149–162

    Article  CAS  PubMed  Google Scholar 

  • Van der Meeren P, El-Bakry M, Neirynck N, Noppe P (2005) Influence of hydrolyzed lecithin on protein adsorption and heat stability of a sterilised coffee cream simulant. Int Dairy J 15:1235–1243

    Article  CAS  Google Scholar 

  • Van der Ven C, Gruppen H, de Bont DBA, Voragen AGJ (2001) Emulsion properties of casein and whey protein hydrolysates and the relation with other hydrolysate characteristics. J Agric Food Chem 49:5005–5012

    Article  PubMed  CAS  Google Scholar 

  • Van Niewenhuyzen W, Szuhaj BF (1998) Effects of lecithins and proteins on the stability of emulsions. Fett-Lipid 100:282–291

    Article  Google Scholar 

  • Viswanathan A (1999) Effect of degree of substitution of octenyl succinate starch on the emulsification activity on different oil phases. J Polym Environ 7:191–196

    Article  CAS  Google Scholar 

  • Vojdani F, Whitaker JR (1994) Chemical and enzymatic modification of proteins for improved functionality. In: Hettiarachy NS, Ziegler GR (eds) Protein functionality in food systems. Marcel Dekker, New York, pp 261–310

    Google Scholar 

  • Walstra P, Guerts TJ, Noomen A, van Boekel MAJS (1999) Dairy technology. Marcel Dekker, New York

    Book  Google Scholar 

  • Wilde P, Mackie A, Husband F, Gunning P, Morris V (2004). Proteins and emulsifiers at liquid interfaces. Adv Colloid Interface Sci. 108–109.

    Google Scholar 

  • Woodward NC, Gunning AP, Mackie AR, Wilde PJ, Morris VJ (2009). Comparison of the orogenic displacement of sodium caseinate with the caseins from the air-water interface by nonionic surfactants. Langmuir. 25(12):6739–44.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Araki M (1997) Effects of lecithin addition in oil or water phase on the stability of emulsions made with whey proteins. Biosci Biotechnol Biochem 61:1791–1795

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi K, Shimizu M, Kamiya T (1980) Emulsifying properties of whey protein. J Food Sci 45:1237–1242

    Article  CAS  Google Scholar 

  • Ye A, Singh H (2007) Formation of multilayers at the interface of oil-in-water emulsion via interactions between lactoferrin and β-lactoglobulin. Food Biophys 2:125–132

    Article  Google Scholar 

  • Ye A, Lo J, Singh H (2012) Formation of interfacial milk protein complexation to stabilize oil-in-water emulsions against calcium. J Colloid Interface Sci 378:184–190

    Article  CAS  PubMed  Google Scholar 

  • Zadow JG (1982) Recombined milks and creams. Int. Dairy Federation Bulletin 142:33–46

    Google Scholar 

  • Zielinski RJ (1997) Synthesis and composition of food-grade emulsifiers. In: Hasenhuettl GL, Hartel RW (eds) Food emulsifiers and their application. Chapman & Hall, New York, pp 11–38

    Chapter  Google Scholar 

  • Zou L, Akoh CC (2013) Characterisation and optimisation of physical and oxidative stability of structured lipid-based infant formula emulsion: Effects of emulsifiers and biopolymer thickeners. Food Chem 141:2486–2494

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Séamus L. McSweeney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McSweeney, S.L. (2019). Emulsifiers in Infant Nutritional Products. In: Hasenhuettl, G., Hartel, R. (eds) Food Emulsifiers and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-29187-7_8

Download citation

Publish with us

Policies and ethics