Skip to main content

Emulsifiers in Dairy Products and Dairy Substitutes

  • Chapter
  • First Online:

Abstract

Low molecular weight emulsifiers are used for a number of functions in dairy products and dairy substitutes. These include their surface-active properties, ability to promote fat crystallization, interactions with proteins, and antimicrobial activity.

In this chapter, we review the role of low molecular weight surfactants across a range of products manufactured by the dairy industry. In ice cream and whipped dairy emulsions, the surface activity of emulsifiers allows them to adsorb to the surface of air bubbles in foams, or to the surface of oil droplets in emulsions, thus facilitating formation of smaller bubbles and droplets and helping to control the stability. Emulsifiers also play a role in nucleation of fat crystallization in ice cream and whipping cream, and contribute to the structure and stability of these products by promoting the partial coalescence that helps to stabilize the foams. In cream liqueur, as well as aiding formation of small, stable emulsion droplets, mono glyceride emulsifiers are able to interact with the casein proteins added for emulsification. This synergy allows a reduction in casein content that improves acid stability if the liqueur is used as a mixer. A similar effect is observed in coffee whitener, where protein-emulsifier interactions give improved acid stability, in processed cheese where electrostatic interactions between anionic emulsifiers and proteins can be exploited to alter the texture, and in recombined and concentrated milks where lecithin protein interactions can improve heat stability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahamson K, Frennborn P, Dejmek P, Buchheim W (1988) Effects of homogenization and heating conditions on physico-chemical properties of coffee cream. Milchwissenschaft 43:762–765

    Google Scholar 

  • Adleman R, Hartel RW (2001) Lipid crystallization and its effect on the physical structure of ice cream. In: Garti N, Sato K (eds) Crystallization processes in fats and lipid systems. Marcel Dekker, New York, pp 381–427

    Google Scholar 

  • Aguirre-Mandujano E, Lobato-Calleros C, Beristain CI, Garcia HS, Vernon-Carter EJ (2009) Microstructure and viscoelastic properties of low-fat yoghurt structured by monoglyceride gels. LWT Food Sci Technol 42:938–944

    Article  CAS  Google Scholar 

  • Allen KE, Murray BS, Dickinson E (2008) Whipped cream-like textured systems based on acidified caseinate-stabilized oil-in-water emulsions. Int Dairy J 18:1011–1021

    Article  CAS  Google Scholar 

  • Banks W, Muir DD (1988) Stability of alcohol containing emulsions. In: Dickinson E, Stainsby G (eds) Advances in food emulsions and foams. Elsevier, London, pp 257–283

    Google Scholar 

  • Banks W, Wilson AG (1981) The formulation of cream-based liqueurs. Milk Industry 83:16–18

    Google Scholar 

  • Barfod NM (2001) The emulsifier effect. Dairy Industries Int 66(1):32–33

    Google Scholar 

  • Barfod NM, Krog N (1987) Destabilization and fat crystallization of whippable emulsions (toppings) studied by pulsed NMR. J Am Oil Chemists Soc 64:112–119

    Article  CAS  Google Scholar 

  • Barfod NM, Krog N, Larsen G, Buchheim W (1991) Effects of emulsifiers on protein-fat mixtures in ice-cream mix during ageing I: quantitative analyses. Fat Sci Technol 93:24–29

    CAS  Google Scholar 

  • Barratt MD, Rayner L (1972) Lysolecithin-casein interactions. I. Nuclear magnetic resonance and spin label studies. Biochimica et Biophysica Acta 255:974–980

    Article  CAS  PubMed  Google Scholar 

  • Bazmi A, Duquenoy A, Relkin P (2007) Aeration of low fat dairy emulsions: effects of saturated and unsaturated triglycerides. Int Dairy J 17:1021–1027

    Article  CAS  Google Scholar 

  • Beuchat LR (1980) Comparison of anti-vibrio activities of potassium sorbate, sodium benzoate and glycerol and sucrose esters of fatty acids. Appl Environ Microbiol 39:1178–1182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biasutti M, Venir E, Marino M, Maifreni M, Innocente N (2013) Effects of high pressure homogenization of ice cream mix on the physical and structural properties of ice cream. Int Dairy J 32:40–45

    Article  CAS  Google Scholar 

  • Bolliger S, Goff HD, Tharp BW (2000) Correlation between colloidal properties of ice cream mix and ice cream. Int Dairy J 10:303–309

    Article  CAS  Google Scholar 

  • Boode K, Walstra P (1993) Partial coalescence in oil-in-water emulsions. 1. Nature of the aggregation. Colloids Surf A 81:121–137

    Article  CAS  Google Scholar 

  • Boode K, Bisperink C, Walstra P (1991) Destabilization of O/W emulsions containing fat crystals by temperature cycling. Colloids Surf 61:55–74

    Article  CAS  Google Scholar 

  • Borjesson J, Dejmek P, Lofgren R, Paulsson M, Glantz M (2015) The influence of serum phase on the whipping time of unhomogenized cream. Int Dairy J 49:56–61

    Article  CAS  Google Scholar 

  • Bos M, Nylander T, Arnebrant T, Clark DC (1997) Protein/emulsifier interactions. In: Hasenheuttl GL, Hartel RW (eds) Food emulsifiers and their applications. Chapman Hall, New York, pp 95–146

    Chapter  Google Scholar 

  • Botcher SR, Foegeding EA (1994) Whey protein gels: fracture stress and strain and related microstructural properties. Food Hydrocoll 8:113–123

    Article  Google Scholar 

  • Bowland EL, Foegeding EA (1995) Effects of anions on thermally induced whey protein isolate gels. Food Hydrocoll 9:47–56

    Article  CAS  Google Scholar 

  • Bowland EL, Foegeding EA, Hamman D (1995) Rheological analysis of anion-induced matrix transformations in thermally induced whey protein isolate gels. Food Hydrocoll 9:57–64

    Article  CAS  Google Scholar 

  • Buchheim W, Barfod NM, Krog N (1985) Relation between microstructure, destabilization phenomena and rheological properties of whippable emulsions. Food Microstruct 4:221–232

    Google Scholar 

  • Buck JS, Walker CE, Pierce MM (1986) Evaluation of sucrose esters in ice cream. J Food Sci 51:489–493

    Article  CAS  Google Scholar 

  • Bullin S, Dickinson E, Impey SJ, Narhan SK, Stainsby G (1988) Stability aspects of casein-containing emulsions: effect of added alcohol or dextran. In: Phillips GO et al (eds) Gums & stabilizers for the food industry, vol 4. IRL Press, Oxford, pp 337–345

    Google Scholar 

  • Burgaud I, Dickinson E (1990) Emulsifying effects of food macromolecules in presence of ethanol. J Food Sci 55:875–876

    Article  CAS  Google Scholar 

  • Caric M, Gantar M, Kalab M (1985) Effects of emulsifying agents on the microstructure and other characteristics of process cheeses – a review. Food Microstruct 4:297–312

    CAS  Google Scholar 

  • Chanamai R, McClements DJ (2001) Prediction of emulsion colour from droplet characteristics: monodisperse oil-in-water emulsions. Food Hydrocoll 15:83–92

    Article  CAS  Google Scholar 

  • Chantrapornchai W, Clydesdale F, McClements DJ (1998) Influence of droplet size and concentration on the color of oil-in-water emulsions. J Agric Food Chem 46:2914–2920

    Article  CAS  Google Scholar 

  • Chantrapornchai W, Clydesdale F, McClements DJ (1999a) Theoretical and experimental study of spectra reflectance and colour of concentrated oil-in-water emulsions. J Colloid Interface Sci 218:324–330

    Article  CAS  PubMed  Google Scholar 

  • Chantrapornchai W, Clydesdale F, McClements DJ (1999b) Influence of droplet characteristics on the optical properties of coloured oil-in-water emulsions. Colloids Surf A 155:373–382

    Article  CAS  Google Scholar 

  • Chantrapornchai W, Clydesdale F, McClements DJ (2001a) Influence of flocculation on optical properties of emulsions. J Food Sci 66:464–469

    Article  CAS  Google Scholar 

  • Chantrapornchai W, Clydesdale F, McClements DJ (2001b) Influence of relative reflective index on optical properties of emulsions. Food Res Int 34:827–835

    Article  CAS  Google Scholar 

  • Chen J, Dickinson E (1999) Effect of monoglycerides and diglycerol-esters on viscoelasticity of heat-set whey protein emulsion gels. Int J Food Sci Technol 34:493–501

    Article  CAS  Google Scholar 

  • Clark DC, Wilde PJ, Wilson DR, Wustneck R (1992) The interaction of sucrose esters with β-lactoglobulin and β-casein from bovine milk. Food Hydrocoll 6:173–186

    Article  CAS  Google Scholar 

  • Clarke C (2012) The science of ice cream2nd edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Conley AJ, Kabara JJ (1973) Antimicrobial action of esters of polyhydric alcohols. Antimicrob Agents Chemother 4:501–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordle CT (1994) Control of food allergies using protein hydrolysates. Food Technol 48(10):72–76

    CAS  Google Scholar 

  • Courthaudon J-L, Dickinson E, Christie WW (1991) Competitive adsorption of lecithin and β-casein in oil-in-water emulsions. J Agric Food Chem 39:1365–1368

    Article  CAS  Google Scholar 

  • Creamer LK (1995) Effect of sodium dodecyl sulphate and palmitic acid on the equilibrium unfolding of bovine β-lactoglobulin. Biochemistry 34:7170–7176

    Article  CAS  PubMed  Google Scholar 

  • Cropper SL, Kocaoglu-Vurma NA, Tharp BW, Harper WJ (2013) Effects of locust bean gum and mono- and di-glyceride concentrations on particle size and melting rates of ice cream. J Food Sci 78(6):C811–C816

    Article  CAS  PubMed  Google Scholar 

  • Cruijsen JMM, Van Boekel MAJS, Walstra P (1994) Effect of malto-dextrins on the heat-stability of caseinate emulsions. Neth Milk Dairy J 48:177–180

    CAS  Google Scholar 

  • Davies E, Dickinson E, Bee RD (2000) Shear stability of sodium caseinate emulsions containing monoglyceride and triglyceride crystals. Food Hydrocoll 14:145–153

    Article  CAS  Google Scholar 

  • Davies E, Dickinson E, Bee RD (2001) Orthokinetic destabilization of emulsions by saturated and unsaturated monoglycerides. Int Dairy J 11:827–836

    Article  CAS  Google Scholar 

  • Daw E, Hartel RW (2015) Fat destabilization and melt-down of ice creams with increased protein content. Int Dairy J 43:33–41

    Article  CAS  Google Scholar 

  • Dickinson E, Golding M (1998) Influence of alcohol on the stability of oil-in water emulsion containing sodium caseinate. J Colloid Interface Sci 197:133–141

    Article  CAS  PubMed  Google Scholar 

  • Dickinson E, Iveson G (1993) Adsorbed films of β-lactoglobulin + lecithin at the hydrocarbon-water and the triglyceride-water interfaces. Food Hydrocoll 6:533–541

    Article  CAS  Google Scholar 

  • Dickinson E, McClements DJ (1995) Advances in food colloids. Blackie Academic & Professional, London, pp 18–23

    Google Scholar 

  • Dickinson E, Tanai S (1992) Temperature dependence of the displacement of proteins from the emulsion droplet surface by surfactants. Food Hydrocoll 6:163–171

    Article  CAS  Google Scholar 

  • Dickinson E, Woskett CM (1988) Effect of alcohol on the adsorption of casein at the oil/water interface. Food Hydrocoll 2:187–195

    Article  CAS  Google Scholar 

  • Dickinson E, Yamamoto Y (1996a) Effect of lecithin on the viscoelastic properties of β-lactoglobulin-stabilized emulsion gels. Food Hydrocoll 10:301–307

    Article  CAS  Google Scholar 

  • Dickinson E, Yamamoto Y (1996b) Viscoelastic properties of heat-set whey protein-stabilized emulsion gels with added lecithin. J Food Sci 61:811–816

    Article  CAS  Google Scholar 

  • Dickinson E, Narhan SK, Stainsby G (1989a) Stability of cream liqueurs containing low-molecular-weight surfactants. J Food Sci 54:77–81

    Article  CAS  Google Scholar 

  • Dickinson E, Rolfe SE, Dalgleish DG (1989b) Competitive adsorption in oil-in-water emulsions containing α-lactalbumin and β-lactoglobulin. Food Hydrocoll 3:193–203

    Article  CAS  Google Scholar 

  • Dickinson E, Mauffret A, Rolfe SE, Woskett CM (1989c) Adsorption at interfaces in dairy systems. Dairy Technol 42:18–22

    Article  Google Scholar 

  • Dickinson E, Iveson G, Tanai S (1993) Competitive adsorption in protein stabilized emulsions containing oil-soluble and water-soluble surfactants. In: Dickinson E, Walstra P (eds) Food colloids and polymers: stability and mechanical properties. Royal Society of Chemistry, London, pp 312–322

    Google Scholar 

  • Dickinson E, Hong S-T, Yamamoto Y (1996) Rheology of heat-set emulsions gels containing β-lactoglobulin and small-molecule surfactants. Neth Milk Dairy J 50:199–207

    CAS  Google Scholar 

  • Doxastakis G, Sherman P (1984) The interaction of sodium caseinate with monoglyceride and diglyceride at the oil/water interface in corn oil-in-water emulsions and its effect on emulsion stability. Colloid Polym Sci 262:902–905

    Article  CAS  Google Scholar 

  • Drake MA, Boutte TT, Luedecke LO, Swanson BG (1994) Milkfat sucrose polyesters as fat substitutes in Cheddar-type cheese. J Food Sci 59:326–327,365

    Article  CAS  Google Scholar 

  • Drake MA, Herrett W, Boylston TD, Swanson BG (1996) Lecithin improves texture of reduced fat cheeses. J Food Sci 61:639–642

    Article  CAS  Google Scholar 

  • Dickinson E, Hong ST (1995) Influence of water-soluble nonionic emulsifier on the rheology of heat-set protein-stabilized emulsion gels. J Agric Food Chem 43(10):2560–2566

    Article  CAS  Google Scholar 

  • Drake MA, Truong VD, Daubert CR (1999) Rheological and sensory properties of reduced‐fat processed cheeses containing lecithin. J Food Sci 64:744–747

    Article  CAS  Google Scholar 

  • Emmett PM, Rogers IS (1997) Properties of human milk and their relationship with maternal nutrition. Early Hum Dev 49:S7–S28

    Article  CAS  PubMed  Google Scholar 

  • Espinosa GP, Scanlon MG (2013) Characterization of alcohol-containing dairy emulsions: pseudo-ternary phase diagrams of sodium caseinate solution-oil-ethanol systems. Food Res Int 53:49–55

    Article  CAS  Google Scholar 

  • Euston SR (2008) Emulsifiers in dairy products and dairy substitutes. In: Hasenhuettl GL, Hartel RW (eds) Food emulsifiers and their applications. Springer Science & Business Media, New York, pp 195–231

    Chapter  Google Scholar 

  • Euston SR, Finnigan SR (2001) Aggregation kinetics in heated emulsions stabilized by hydrolysed whey protein. J Agric Food Chem 49(11):5576–5583

    Article  CAS  PubMed  Google Scholar 

  • Euston SE, Singh H, Munro PA, Dalgleish DG (1995a) Competitive adsorption between sodium caseinate and oil-soluble and water-soluble surfactants in oil-in-water emulsions. J Food Sci 60:1124–1131

    Article  CAS  Google Scholar 

  • Euston SE, Singh H, Munro PA, Dalgleish DG (1995b) The influence of glycerol monostearate in oil-in-water emulsions stabilized by milk protein. J Food Sci 61:916–920

    Article  Google Scholar 

  • Euston SR, Finnigan SR, Hirst RL (2001) Aggregation kinetics in heated whey protein stabilized emulsions II. Effect of low-molecular weight emulsifiers. Food Hydrocolloids 15(3):253–262

    Article  CAS  Google Scholar 

  • Euston SR, Finnigan SR, Hirst RL (2002) Aggregation kinetics in heated whey protein stabilized emulsions III. Effect of polysaccharide stabilizers. Food Hydrocolloids 16:499–505

    Article  CAS  Google Scholar 

  • Farooq K, Haque ZU (1992) Effect of sugar esters on the textural properties of non-fat low calorie yoghurt. J Dairy Sci 75(2676):2680

    Google Scholar 

  • Fontecha J, Swaisgood HE (1994) Interaction of sucrose esters with skim milk proteins as characterized by affinity chromatography. J Dairy Sci 77:3545–3551

    Article  CAS  Google Scholar 

  • Fox PF, Hearn CM (1978) Heat stability of milk: influence of denaturable proteins and detergents on pH sensitivity. J Dairy Res 45:159–172

    Article  CAS  Google Scholar 

  • Fredrick E, Heyman B, Moens K, Fischer S, Verwijlen T, Moldenaers P, Van der Meeren P, Dewettinck K (2013aa) Monoacylglycerols in dairy recombined cream: II. The effect on partial coalescence and whipping properties. Food Res Int 51:936–945

    Article  CAS  Google Scholar 

  • Fredrick E, Moens K, Heyman B, Fischer S, Van der Meeren P, Dewettinck K (2013b) Monoacylglycerols in dairy recombined cream: I. The effect on milk fat crystallization. Food Res Int 51:892–898

    Article  CAS  Google Scholar 

  • Frøkjaer S (1994) Use of hydrolysates for protein supplementation. Food Technol 48(10):86–88

    Google Scholar 

  • Gavrilova NB (1976) Improvement of structural and mechanical properties of sliced process cheese. Zernoperabatyvayuschchaya I Pishchevaya Promyshlennost 6:131–136. (In Russian)

    Google Scholar 

  • Goff HD (1997) Instability and partial coalescence in dairy emulsions. J Dairy Sci 80:2620–2630

    Article  CAS  Google Scholar 

  • Goff HD (2002) Formation and stabilization of structure in ice cream and related products. Curr Opin Colloid Interface Sci 7:432–437

    Article  CAS  Google Scholar 

  • Goff HD, Hartel RW (2013) Ice cream7th edn. Springer, New York

    Book  Google Scholar 

  • Goff HD, Verespej E, Smith AK (1999) A study of fat and air structures in ice cream. Int Dairy J 9:817–829

    Article  CAS  Google Scholar 

  • Goh KKT, Ye A, Dale N (2006) Characterisation of ice cream containing flaxseed oil. Int J Food Sci Technol 41:946–953

    Article  CAS  Google Scholar 

  • Granger C, Barey P, Combe N, Veschambre P, Cansell M (2003) Influence of the fat characteristics on the physicochemical behavior of oil-in-water emulsions based on milk proteins-glycerol esters mixtures. Colloids Surf B Biointerfaces 32:353–363

    Article  CAS  Google Scholar 

  • Granger C, Leger A, Barey P, Langendorff V, Cansell M (2005) Influence of formulation on the structural networks in ice cream. Int Dairy J 15:255–262

    Article  CAS  Google Scholar 

  • Hambling SG, McAlpine AS, Sawyer L (1992) β-lactoglobulin. In: Fox PF (ed) Advanced dairy chemistry −1: proteins. Elsevier, London, pp 141–190

    Google Scholar 

  • Hanssens I, van Cauwelaert IH (1978) Shielding of phospholipid monolayers from phospholipase C hydrolysis by α-lactalbumin adsorption. Biochem Biophys Res Commun 84:1088–1096

    Article  CAS  PubMed  Google Scholar 

  • Hardy EE, Sweetsur AWM, West IG, Muir DD (1985) Heat stability of concentrated milk: enhancement of initial heat stability by incorporation of food grade lecithin. J Food Technol 20:97–105

    Article  CAS  Google Scholar 

  • Hayes MG, Lefrancois AC, Waldron DS, Goff HD, Kelly AL (2003) Influence of high pressure homogenisation on some characteristics of ice cream. Milchwissenschaft 58:519–523

    Google Scholar 

  • Heffernan SP, Kelly AL, Mulvihill DM, Lambrich U, Schuchmann HP (2011) Efficiency of a range of homogenisation technologies in the emulsification and stabilization of cream liqueurs. Innov Food Sci Emerg Technol 12:628–634

    Article  CAS  Google Scholar 

  • Holtorff AF et al (1951) A study of process cheese emulsifiers. J Dairy Sci 34:486

    Google Scholar 

  • Hotrum NE, Cohen Stuart MA, van Vliet T, van Aken GA (2004) Spreading of partially crystallized oil droplets on an air/water interface. Colloids Surf A Physicochem Eng Asp 240:83–92

    Article  CAS  Google Scholar 

  • Hotrum NE, Cohen Stuart MA, van Vliet T, Avino SF, van Aken GA (2005) Elucidating the relationship between the spreading coefficient, surface-mediated partial coalescence and the whipping time of artificial cream. Colloids Surf A Physicochem Eng Asp 260:71–78

    Article  CAS  Google Scholar 

  • Huppertz T, Smiddy MA, Goff HD, Kelly AL (2011) Effect of high pressure treatment of mix on ice cream manufacture. Int Dairy J 21:718–726

    Article  Google Scholar 

  • Ihara K, Habara K, Ozaki Y, Nakamura K, Ochi H, Saito H, Asaoka H, Uozumi M, Ichihashi N, Iwatsuki K (2010) Influence of whipping temperature on the whipping properties and rheological characteristics of whipped cream. J Dairy Sci 93:2887–2895

    Article  CAS  PubMed  Google Scholar 

  • Ihara K, Ochi H, Saito H, Iwatsuki K (2011) Effects of buttermilk powders on emulsification properties and acid tolerance of cream. J Food Sci 76:C265–C271

    Article  CAS  PubMed  Google Scholar 

  • Ihara K, Hirota M, Akitsu T, Urakawa K, Abe T, Sumi M, Okawa T, Fujii T (2015) Effects of emulsifying components in the continuous phase of cream on the stability of fat globules and the physical properties of whipped cream. J Dairy Sci 98:2875–2883

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Foegeding EA (1999a) Effects of lecithin on thermally induced whey protein isolate gels. Food Hydrocoll 13:239–244

    Article  CAS  Google Scholar 

  • Ikeda S, Foegeding EA (1999b) Dynamic viscoelastic properties of thermally induced whey protein isolate gels with added lecithin. Food Hydrocoll 13:245–254

    Article  CAS  Google Scholar 

  • Ikeda S, Foegeding EA, Hardin CC (2000) Phospholipid/fatty acid-induced secondary structural change in β-lactoglobulin during heat-induced gelation. J Agric Food Chem 48(3):605–610

    Article  CAS  PubMed  Google Scholar 

  • Jost R, Dannenberg F, Rosset J (1989) Heat-set gels based on oil/water emulsions: an application of whey protein functionality. Food Microstruct 8:23–28

    CAS  Google Scholar 

  • Kabara JJ (1983) Medium chain fatty acids and esters. In: Branen AL, Davidson PM (eds) Antimicrobials in food. Marcel Dekker, New York, pp 109–140

    Google Scholar 

  • Kasinos M, Tran Leb T, Van der Meeren P (2014a) Improved heat stability of recombined evaporated milk emulsions upon addition of phospholipid enriched dairy by-products. Food Hydrocoll 34:112–118

    Article  CAS  Google Scholar 

  • Kasinos M, Mukarukundo F, De Beuf K, Van der Meeren P (2014b) Anionic and zwitterionic phospholipids differently affect the heat coagulation of recombined concentrated milk emulsions. Int Dairy J 39(2014):131–138

    Article  CAS  Google Scholar 

  • Kasinos M, Goñi ML, Nguyen MT, Sabatino P, Martins JC, Dewettinck K, Van der Meeren P (2014c) Effect of hydrolysed sunflower lecithin on the heat-induced coagulation of recombined concentrated milk emulsions. Int Dairy J 38:187–194

    Article  CAS  Google Scholar 

  • Kato N, Shibasaki I (1975) Comparison of antimicrobial activities of fatty acids and their esters. J Ferment Technol 53:793–801

    CAS  Google Scholar 

  • Kieseker FG (1983) Recombined dairy products. CSIRO Food Res Quarterly 43:25–37

    Google Scholar 

  • Kim H-J, Bot A, de Vries ICM, Golding M, Pelan EG (2013) Effects of emulsifiers on vegetable-fat based aerated emulsions with interfacial rheological contributions. Food Res Int 53:342–351

    Article  CAS  Google Scholar 

  • Knightly WH (1969) The role of ingredients n the formulation of coffee whiteners. Food Technol 23:37–48

    Google Scholar 

  • Knipschildt ME, Andersen GG (1994) Drying of milk and milk products. In: Robinson RK (ed) Modern dairy technology. Advances in milk processing, vol 1. Chapman and Hall, London, pp 159–254

    Chapter  Google Scholar 

  • Korver O, Meder H (1974) The influence of lysolecithin on the complex formation between β-lactoglobulin and κ-casein. J Dairy Res 41:9–17

    Article  CAS  PubMed  Google Scholar 

  • Koxholt MMR, Eisenmann B, Hinrichs J (2001) Effect of the fat globule sizes on the meltdown of ice cream. J Dairy Sci 84:31–37

    Article  CAS  PubMed  Google Scholar 

  • Krog N, Barfod NM, Buchheim W (1986) Protein-fat-surfactant interactions in whippable emulsions. In: Dickinson E (ed) Food emulsions and foams. Royal Society of Chemistry, London, pp 144–157

    Google Scholar 

  • Langton M, Hermansson AM (1992) Fine-stranded and particulate gels of beta-lactoglobulin and whey-protein at varying pH. Food Hydrocoll 5:523–539

    Article  CAS  Google Scholar 

  • Lee SK, Klostermeyer H, Schrader K, Bucheim W (1996) Rheology and microstructure of model processed cheese containing small molecular weight surfactants. Nahrung 40:189–194

    Article  CAS  Google Scholar 

  • Leo A, Betscher JJ (1971) Use of sodium stearyl-2-lactylate to improve the lipoprotein membrane in non-dairy coffee whiteners. Food Technol 4:70–78

    Google Scholar 

  • Leviton A, Pallansch MJ (1962) High temperature short-time sterilized evaporated milk. IV. The retardation of gelation with condensed polyphosphates, manganous ions, polyhydric compounds and phosphatides. J Dairy Sci 45:1045–1056

    Article  CAS  Google Scholar 

  • Lobato-Calleros C, Robles-Martinez JC, Caballero-Perez JF, Aguirre-Mandujano E, Vernon-Carter EJ (2001) Fat replacers in low-fat Mexican Manchego cheese. J Texture Stud 32:1–14

    Article  Google Scholar 

  • Lobato-Calleros C, Velázquez-Varela J, Sánchez-Garcı́a J, Vernon-Carter EJ (2003) Dynamic rheology of Mexican Manchego cheese-like products containing canola oil and emulsifier blends. Food Res Int 36(1):81–90

    Article  CAS  Google Scholar 

  • Makino S, Moriyama R (1991) Interactions of proteins with sucrose esters. In: El-Nokaly M, Cornell D (eds) Microemulsions and emulsions in foods, vol 448. American Chemical Society Symposium Series, Washington, DC, p 182

    Chapter  Google Scholar 

  • Mangino ME (1992) Gelation of whey protein concentrates. Food Technol 46:114–117

    CAS  Google Scholar 

  • Maxcy RB, Sommer HH (1954) Fat separation in evaporated milk. III. Gravity separation and heat stability. J Dairy Sci 37:1061–1070

    Article  CAS  Google Scholar 

  • Mayhill PG, Newstead DF (1992) The effect of milk fat fractions and emulsifier type on creaming in normal-solids UHT recombined milk. Milchwissenschaft 47:75–79

    CAS  Google Scholar 

  • McClements DJ (2002a) Colloidal basis of emulsion colour. Curr Opin Colloid Interface Sci 7:451–455

    Article  CAS  Google Scholar 

  • McClements DJ (2002b) Theoretical prediction of emulsion colour. Adv Colloid Interf Sci 97:63–89

    Article  CAS  Google Scholar 

  • McClements DJ, Chantrapornchai W, Clydesdale F (1998) Prediction of food emulsion colour using light scattering theory. J Food Sci 63:935–939

    Article  CAS  Google Scholar 

  • Mendez-Velasco C, Goff HD (2011) Enhancement of fat colloidal interactions for the preparation of ice creams high in unsaturated fat. Int Dairy J 21:540–547

    Article  CAS  Google Scholar 

  • Mendez-Velasco C, Goff HD (2012a) Fat aggregation in ice cream: a study on the types of fat interactions. Food Hydrocoll 29:152–159

    Article  CAS  Google Scholar 

  • Mendez-Velasco C, Goff HD (2012b) Fat structures as affected by unsaturated or saturated monoglyceride and their effect on ice cream structure, texture and stability. Int Dairy J 24:33–39

    Article  CAS  Google Scholar 

  • Miller DE, Werstak CE (1983) U.S. Patent 4,415,600, July 27th

    Google Scholar 

  • Moens K, Masum AKM, Dewettinck K (2016) Tempering of dairy emulsions: partial coalescence and whipping properties. Int Dairy J 56:92–100

    Article  CAS  Google Scholar 

  • Morr CV (1992) Improving the texture and functionality of whey protein concentrate. Food Technol 46:110–113

    CAS  Google Scholar 

  • Morr CV, Ha EY (1993) Whey protein concentrates and isolates: processing and functional properties. Crit Rev Food Sci Nutr 33:431–476

    Article  CAS  PubMed  Google Scholar 

  • Munk MB, Marangoni AG, Ludvigsen HK, Norn V, Knudsen JC, Risbo J, Ipsen R, Andersen M (2013) Stability of whippable oil-in-water emulsions: effects of monoglycerides on crystallization of palm kernel oil. Food Res Int 54:1738–1745

    Article  CAS  Google Scholar 

  • Muse MR, Hartel RW (2004) Ice cream structural elements that affect melting rate and hardness. J Dairy Sci 87:1–10

    Article  CAS  PubMed  Google Scholar 

  • Mutoh T-A, Kubouchi H, Noda M, Shiinoki Y, Matsumura Y (2007) Effect of oil-soluble emulsifiers on solidification of thermally treated creams. Int Dairy J 17:24–28

    Article  CAS  Google Scholar 

  • McCrae CH, Muir DD (1992) Heat stability of recombined milk: influence of lecithins on the heat coagulation time-pH profile. J Dairy Res 59(2):177–185

    Article  CAS  Google Scholar 

  • McSweeney SL, Healy R, Mulvihill DM (2008) Effect of lecithin and monoglycerides on the heat stability of a model infant formula emulsion. Food Hydrocolloids 22(5):888–898

    Article  CAS  Google Scholar 

  • Newstead DF, Sanderson WB, Conaghan EF (1977) Effects of whey protein concentration and heat treatment on the heat stability of concentrated and unconcentrated milk. New Zeal J Dairy Sci 12:29–36

    CAS  Google Scholar 

  • Noda M, Yamamoto H (1994) Effects of tempering on physical properties of whip cream. Nippon Shokuhin Kogyo Gakkaishi, 41:327–334.

    Article  Google Scholar 

  • Palanuwech J, Coupland JN (2003) Effect of surfactant type on the stability of oil-in-water emulsions to dispersed phase crystallization. Colloids Surf A Physicochem Eng Asp 223:251–262

    Article  CAS  Google Scholar 

  • Patton S, Keenan TW (1975) The Milk fat globule membrane. Biochim Biophys Acta Rev Biomembr 415(3):273–309

    Article  CAS  Google Scholar 

  • Pearce KN (1978) Study of some factors affecting the heat stability of milk, 20th International Conference Dairy Congress, Paris, E. p 250–251

    Google Scholar 

  • Petrut RF, Danthine S, Blecker C (2016) Assessment of partial coalescence in whippable oil-in-water food emulsions. Adv Colloid Interf Sci 229:25–33

    Article  CAS  Google Scholar 

  • Phan TTQ, Moens K, Le TT, Van der Meeren P, Dewettinck K (2014) Potential of milk fat globule membrane enriched materials to improve the whipping properties of recombined cream. Int Dairy J 39:16–23

    Article  CAS  Google Scholar 

  • Puyol P, Perez MD, Burgos J, Calvo M (1998) Effect of the binding of palmitic acid to β-lactoglobulin on its gelation properties. Int Dairy J 8:119–123

    Article  CAS  Google Scholar 

  • Relkin P, Sourdet S, Smith AK, Goff HD, Cuvelier G (2006) Effects of whey protein aggregation on fat globule microstructure in whipped frozen emulsions. Food Hydrocoll 20:1050–1056

    Article  CAS  Google Scholar 

  • Rinaldi M, Dall’Asta C, Paciulli M, Guizzetti S, Barbanti D, Chiavaro E (2014) Innovation in the Italian ice cream production: effect of different phospholipid emulsifiers. Dairy Sci Technol 94:33–49

    Article  CAS  Google Scholar 

  • Rivas HJ, Sherman P (1984) Soy and meat proteins as emulsion stabilizers. 4. The stability and interfacial rheology of o/w emulsions stabilized by soy and meat protein fractions. Colloids Surf 11:155–171

    Article  CAS  Google Scholar 

  • Rombaut R, Dejonckheere V, Dewettinck K (2007) Filtration of milk fat globule membrane fragments from acid buttermilk cheese whey. J Dairy Sci 90(4):1662–1673

    Article  CAS  PubMed  Google Scholar 

  • Rosentahl I (1991) Milk and dairy products. Properties and processing. VCH Publishers, Weinheim

    Google Scholar 

  • Segall KI, Goff HD (1999) Influence of adsorbed milk protein type and surface concentration on the quiescent and shear stability of butteroil emulsions. Int Dairy J 9:683–691

    Article  CAS  Google Scholar 

  • Segall KI, Goff HD (2002) A modified processing routine for ice cream that promotes fat destabilization in the absence of added emulsifier. Int Dairy J 12:1013–1018

    Article  CAS  Google Scholar 

  • Shalabi SI, Fox PF (1982) Heat stability of milk: influence of cationic detergents on pH sensitivity. J Dairy Res 49:597–605

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki I (1979) Antimicrobial activity of fatty acids and their esters. A review. Hakkokogaku 57:164–176

    CAS  Google Scholar 

  • Shimp LA (1985) Process cheese principles. Food Technol 39:63–70

    Google Scholar 

  • Si JQ (1991) The production of dairy analogue products using emulsifiers, stabilizers and flavours. In: Rajah KK, Burgess KJ (eds) Milk fat production, technology and utilization. The Society of Dairy Technology, Huntingdon, pp 112–121

    Google Scholar 

  • Sims RJ (1989) Spray dried emulsions. In: Charalambous G, Doxastakis G (eds) Food emulsifiers, chemistry, technology, functional properties and applications. Elsevier, Amsterdam, pp 495–509

    Google Scholar 

  • Singh H, Creamer LK (1992) Heat stability of milk. In: Fox PF (ed) Advanced dairy chemistry. Proteins, vol 1. Elsevier, London, pp 621–656

    Google Scholar 

  • Singh H, Tokley RP (1990) Effects of preheat treatments and buttermilk addition on the seasonal variations in the heat stability of recombined evaporated milk and reconstituted concentrated milk. Aust J Dairy Technol 45:10–16

    Google Scholar 

  • Singh H, Sharma R, Tokley RP (1992) Influence of incorporation of soya lecithin into skim milk powder on the heat stability of recombined evaporated milk. Aust J Dairy Technol 47:33–37

    CAS  Google Scholar 

  • Sjollema A (1987) Recombination of milk and dairy ingredients into milk, cream, condensed milk and evaporated milk. Milk – the vital force. Reidel Publishing, Boston, MA, pp 251–257

    Google Scholar 

  • Smith AK, Goff HD, Kakuda Y (2000a) Changes in protein and fat structure in whipped cream caused by heat treatment and addition of stabilizer to the cream. Food Res Int 33:697–706

    Article  CAS  Google Scholar 

  • Smith AK, Goff HD, Kakuda Y (2000b) Microstructure and rheological properties of whipped cream as affected by the heat treatment and addition of stabilizer to the cream. Int Dairy J 10:295–301

    Article  CAS  Google Scholar 

  • Sung KK, Goff HD (2010) Effect of solid fat content on structure in ice creams containing palm kernel oil and high-oleic sunflower oil. J Food Sci 75(3):C274–C279

    Article  CAS  PubMed  Google Scholar 

  • Swaisgood HE (1992) Chemistry of the caseins. In: Fox PF (ed) Advanced dairy chemistry. Proteins, vol 1. Elsevier, London, pp 63–110

    Google Scholar 

  • Tharp BW, Young LS (2013) On ice cream. Destech Publications Inc., Lancaster, PA

    Google Scholar 

  • Thomas MA, Newell G, Abad GA, Turner AD (1980) Effect of emulsifying salts on objective and subjective properties of processed cheese. J Food Sci 45(458–459):466

    Google Scholar 

  • Tormo R, Pota N, Infante D, Moran J, Martin B, Bergada A (1998) Protein in infant formulas. Future aspects of development. Early Hum Dev 53:S165–S172

    Article  CAS  PubMed  Google Scholar 

  • Tsuchido T, Saeki T, Shibasaki I (1981) Death kinetics of Escherichia coli in a combined treatment with heat and monolaurin. J Food Saf 3:57–68

    Article  CAS  Google Scholar 

  • Tsuchido T, Takano M, Shibasaki I (1983) Inhibitory effect of sucrose esters of fatty acids on intact heated bacterial spores. J Antibacterial Antifungal Agents 11:567–573

    CAS  Google Scholar 

  • Tsuchido T, Anh YH, Takano M (1987) Lysis of Bacillus subtilis cells by glycerol and sucrose esters of fatty acids. Appl Environ Microbiol 53:505–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tunick MH, Malin E, Smith PW, Shieh JJ, Sullivan BC, Mackey KL, Webb D (1999) The smart fat makeover. Prevention 1:134–141

    Google Scholar 

  • van Aken GA (2001) Aeration of emulsions by whipping. Colloids Surf A Physicochem Eng Asp 190:333–354

    Article  Google Scholar 

  • van Boekel MAJS, Walstra P (1981) Stability of oil-in-water emulsions with crystals in the disperse phase. Colloids Surf 3:109–118

    Article  Google Scholar 

  • van Lent K, Le CT, Vanlerberghe B, Van der Meeren P (2008) Effect of formulation on the emulsion and whipping properties of recombined dairy cream. Int Dairy J 18:1003–1010

    Article  CAS  Google Scholar 

  • Varnan AH, Sutherland JP (1994) Milk and milk products – technology, chemistry and microbiology. Chapman and Hall, London

    Book  Google Scholar 

  • Vial C, Thakur RK, Djelveh G, Picgirard L (2005a) Continuous manufacturing of a light-textured foamed cheese by dispersion of a gas phase. I. Influence of process parameters. J Food Eng 77:1–13

    Article  Google Scholar 

  • Vial C, Thakur RK, Quintans AP, Djelveh G, Picgirard L (2005b) Continuous manufacturing of a light-textured foamed fresh cheese by dispersion of a gas phase. II Influence of formulation. J Food Eng 77:14–26

    Article  Google Scholar 

  • Walstra P, Jenness R (1984) Dairy chemistry and physics. Wiley, New York

    Google Scholar 

  • Warren MM, Hartel RW (2014) Structural, compositional and sensorial properties of United States commercial ice cream products. J Food Sci 79(10):E2005–E2013

    Article  CAS  PubMed  Google Scholar 

  • Wong PYY, Kitts DD (2003) A comparison of the buttermilk solids functional properties to nonfat dried milk, soy protein isolate, dried egg white, and egg yolk powders. J Dairy Sci 86(3):746–754

    Article  CAS  PubMed  Google Scholar 

  • Xinyi E, Pei ZJ, Schmidt K (2010) Ice cream: foam formation and stabilization—a review. Food Rev Intl 26:122–137

    Article  CAS  Google Scholar 

  • Zadow JG (1982) Recombined milks and creams. Int Dairy Fed Bull 142:33–46

    Google Scholar 

  • Zakharova NP et al (1979a) The calcium-phosphorous ratio in processed cheese. Trudy-Vsesoyuznyi-Nauchno-issledovatel’skii-Institu-Maslodel’noi-I-Syrodel’noi-Promyshlennosti-Nauchno-proizvodstvennogo-Ob “edineniya”-‘Uglich’ 27:105–108, 121. (In Russian)

    Google Scholar 

  • Zakharova NP et al (1979b) Method for increasing the hydrophilic properties of cheese mass. Trudy-Vsesoyuznyi-Nauchno-issledovatel’skii-Institu-Maslodel’noi-I-Syrodel’noi-Promyshlennosti-Nauchno-proizvodstvennogo-Ob “edineniya”-‘Uglich’ 27:108–111. (In Russian)

    Google Scholar 

  • Zhang Z, Goff HD (2004) Protein distribution at air interfaces in dairy foams and ice cream as affected by casein dissociation and emulsifiers. Int Dairy J 14:647–657

    Article  CAS  Google Scholar 

  • Zhang Z, Goff HD (2005) On fat destabilization and composition of the air interface in ice cream containing saturated and unsaturated monoglyceride. Int Dairy J 15:495–500

    Article  CAS  Google Scholar 

  • Zhang Z, Dalgleish DG, Goff HD (2004) Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. Colloids Surf B: Biointerfaces 34:113–121

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Kuang W, Long Z, Fang M, Liu D, Yang B, Zhao M (2013) Effect of sorbitan monostearate on the physical characteristics and whipping properties of whipped cream. Food Chem 141:1834–1840

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Euston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Euston, S.R., Goff, H.D. (2019). Emulsifiers in Dairy Products and Dairy Substitutes. In: Hasenhuettl, G., Hartel, R. (eds) Food Emulsifiers and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-29187-7_7

Download citation

Publish with us

Policies and ethics