Skip to main content

Emulsifier-Carbohydrate Interactions

  • Chapter
  • First Online:

Abstract

Emulsifiers are a diverse group of amphiphilic, surfactant compounds that interact by various mechanisms with carbohydrates, another diverse group of compounds present in foods. Some emulsifiers interact with starches, a carbohydrate fraction that is ubiquitous in foods, via a hydrophobic (lipophilic) bonding that results in the formation of reversible starch/surfactant inclusion complexes. The functional properties of food starches are attained when heated in the presence of water, allowing the starch granules absorb water and swell, and inducing some level of starch gelatinization. Pasting, an empirical rheological measurement, is the net effect of the competing events of granule swelling and disintegration, and a peak viscosity is commonly measured during pasting. Surfactants added to foods tend to stabilize the swollen starch granule during cooking and can also affect the properties of starch gels that form during cooling. A wide range of emulsifiers, capable of a variety of interactions with other molecules, are used in food products. Each emulsifier tends to be best suited for one or two functions. No single emulsifier exhibits a high level of all common functional characteristics, and the impact is not always predictable. The interactions between exogenous emulsifiers and starches resulting in inclusion complex formation is often used to deliberately control properties of the starches. These interactions have a significant, practical impact on food products containing starch. For example, the increase in firmness and loss of flavor in staled bread are caused by retrogradation of the amylopectin fraction of wheat starch. Control or modification of amylopectin retrogradation by incorporation of surfactants is an important application for surfactants in the food industry. Studies have also shown that starch/surfactant complexes modify in vitro and in vivo hydrolysis and digestion of starch, an interesting phenomenon with potential implications to carbohydrate digestibility. In addition to using emulsifiers to modify starch characteristics during processing, potential use of pre-formed amylose/surfactant complexes as potential temperature controlled release agents for lipids or reduced Glucose Index carbohydrates have been proposed. Other common carbohydrates in food such as simple sugars and most hydrocolloids are not amphiphilic due to the absence of a lipophilic group, so do not directly form complexes with emulsifiers. Emulsifiers can, however, influence the functionality of non-starch carbohydrates due to interfacial activity or competition for water.

Amylose-lipid complexes are formed under a range of common processing conditions for starch-based foods. Some process parameters, such as time of addition of an emulsifier, can be varied to significantly modify the food properties. When studying these interactions, some traditional methods of starch analysis, such as iodine binding capacity may not be sensitive enough to be useful in selection or optimizing emulsifier performance for a specific matrix, especially with high amylopectin starch matrices. However, the functionality of emulsifiers in starch-containing food systems can be demonstrated by measuring the impact of emulsifiers on other ingredients or food systems. Examples include data from starch pasting profiles and enzymolysis. In addition, directly measuring the physical properties of starch/surfactant complexes has provided valuable insights into their identification, and has broadened the understanding of the functionality of surfactants in starch-containing food systems. Techniques, such as X-ray diffraction, differential scanning calorimetry, nuclear magnetic resonance, electron spin resonance, rheology and microscopy have proven especially useful. The bimolecular interactions that emulsifiers participate in continue to be studied and better understood. Correlation of these data to ingredient behavior in complicated food formulations can be quite difficult, however, and further efforts to refine predictive cause-effect relationships for practical application in complex food matrices are needed. The best understanding comes from using multiple approaches including empirical and direct methods of measurement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmadi-Abhari S, Woortman AJJ, Hamer RJ, Oudhuis AACM, Loos K (2013) Influence of lysophosphatidylcholine on the gelation of diluted wheat starch suspensions. Carbohydr Polym 93:224–231

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi-Abhari S, Woortman AJJ, Oudhuis AACM, Hamer RJ, Loos K (2013) The influence of amylose-LPC complex formation on the susceptibility of wheat starch to amylase. Carbohydr Polym 97(2):436–440

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AS (2012) Investigation into interactions between emulsifiers and wheat starch/wheat flour. MS Thesis. Kansas State University, Manhattan, KS

    Google Scholar 

  • Aronbine JS et al (1988) Dynamic control of polymorphic transformations in triglycerides by surfactants: the button syndrome. J Am Oil Chem Soc 65:1144–1150

    Article  Google Scholar 

  • Azizi MH, Rau VG (2005) Effect of surfactant in pasting characteristics of various starches. Food Hydrocoll 19(4):739–743

    Article  CAS  Google Scholar 

  • Babak VG et al (2000) Hydrophobically associating alginate derivatives: surface tension properties of their mixed aqueous solutions with oppositely charged surfactants. J Colloid Interface Sci 225(2):505–510

    Article  CAS  PubMed  Google Scholar 

  • Babin H, Dickinson E, Chisholm H, Beckett S (2005) Interactions in dispersions of sugar particles in food oils: influence of emulsifier. Food Hydrocoll 19(3):513–520

    Article  CAS  Google Scholar 

  • Baer CC, et al. (1991) Low calorie food products having smooth creamy organoleptic characteristics. U.S. Pat. 5,011,071, May 1, Kraft General Foods, Inc.

    Google Scholar 

  • Bahm H, et al. (2006) Rheology and sedimentation studies of sugar particle dispersions in food oils. International Symposium on Food Rheology and Structure, Zurich Institute of Food Science and Nutrition

    Google Scholar 

  • Banks W, Greenwood CT (1975) Starch and its components. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Batres LV, White PJ (1986) Interaction of amylopectin with monoglycerides. J Am Oil Chem Soc 63:1537–1540

    Article  CAS  Google Scholar 

  • Belitz HD, Grosch W, Schienberle P (2004a) Carbohydrates. Food chemistry. Springer, Berlin, pp 245–341

    Chapter  Google Scholar 

  • Belitz HD, Grosch W, Schienberle P (2004b) Chapter 4: polysaccharides. Food chemistry. Springer, Berlin, pp 297–339

    Chapter  Google Scholar 

  • Bhatnagar S, Hanna MA (1994) Amylose-lipid complex formation during single-screw extrusion of various corn starches. Cereal Chem 71(6):582–287

    CAS  Google Scholar 

  • Biliaderis CG, Galloway G (1989) Crystallization behavior of amylose-V complexes: structure-property relationships. Carbohydr Res 189:31–48

    Article  CAS  Google Scholar 

  • Biliaderis CG, Tonogai JR (1991) Influence of lipids on the thermal and mechanical properties of concentrated gels. J Agric Food Chem 39:833–840

    Article  CAS  Google Scholar 

  • Biliaderis CG, Vaughan DJ (1987) Electron spin resonance studies of starch-waterprobe interactions. Carbohydr Polym 7:51–70

    Article  CAS  Google Scholar 

  • Bourne FJ et al (1960) Interaction of starch with sucrose stearates and other anti-staling agents. J Sci Food Agric 11:101–109

    Article  CAS  Google Scholar 

  • Bulpin V et al (1982) Physical characterization of amylose-fatty acid complexes in starch granules and in solution. Starke 34:335–339

    Article  CAS  Google Scholar 

  • Carlson TL-G et al (1979) A study of the amylose-monoglyceride complex by Raman spectroscopy. Starke 31:222–224

    Article  CAS  Google Scholar 

  • Chakrabarti S (2005) Probing ingredient functionalities in food systems using rheological methods. In: Gaonkar AG, McPherson A (eds) Ingredient interactions: effects on food quality. CRC Press, Boca Raton, pp 49–86

    Chapter  Google Scholar 

  • Charutigon C, Jitpupakdree J, Namsree P, Rungsardthong V (2008) Effects of processing conditions and the use of modified starch and monoglyceride on some properties of extruded Rice vermicelli. Lebensm Wiss Technol 41(4):642–651

    Article  CAS  Google Scholar 

  • Conde-Petit B, Escher F (1992) Gelation of low concentration starch systems induced by starch-emulsifier complexation. Food Hydrocoll 6(2):223–229

    Article  CAS  Google Scholar 

  • Conde-Petit B, Escher F (1994) Influence of starch complexation on the aging behavior of high concentrations starch gels. Starke 46(5):172–177

    CAS  Google Scholar 

  • Cui R, Oates CG (1999) The effect of amylose-lipid complex formation on enzyme susceptibility of sago starch. Food Chem 65(4):417–425

    Article  CAS  Google Scholar 

  • Deffenbaugh LD (1990) Characterization of the interactions between a sucrose fatty acid ester emulsifier and starches. Ph.D. Dissertation, University of Nebraska, Lincoln, NE

    Google Scholar 

  • Dhonsi D, Stapley AGF (2006) The effect of shear rate, temperature, sugar and emulsifier on the tempering of cocoa butter. J Food Eng 77(4):936–942

    Article  Google Scholar 

  • Dickinson E et al (2005) Interactions in dispersions of sugar particles in food oils: influence of emulsifer. Food Hydrocoll 19(3):513–520

    Article  CAS  Google Scholar 

  • Donovan JW (1979) Phase transitions of the starch-water system. Biopolymers 18:263–275

    Article  CAS  Google Scholar 

  • Ebeler SF, Walker CE (1984) Effects of various sucrose fatty acid ester emulsifiers on high-ratio white layer cakes. J Food Sci 49:380–388

    Article  CAS  Google Scholar 

  • Eliasson AC (1980) Effect of water content on the gelatinization of wheat starch. Starke 32:270–272

    Article  CAS  Google Scholar 

  • Eliasson AC (1983) Differential scanning calorimetry studies on wheat starch gluten mixtures II: effect of gluten and sodium Stearoyl Lactylate on starch crystallization during aging of wheat starch gels. J Cereal Sci 1:207–213

    Article  CAS  Google Scholar 

  • Eliasson AC (1985) Starch gelatinization in the presence of emulsifiers. Starke 37:411–415

    Article  CAS  Google Scholar 

  • Eliasson AC (1986a) On the effects of surface active agents on the gelatinization of starch – a calorimetric investigation. Carbohydr Polym 6:463–476

    Article  CAS  Google Scholar 

  • Eliasson AC (1986b) Viscoelastic behavior during the gelatinization of starch II: effects of emulsifiers. J Texture Stud 18:357–375

    Article  Google Scholar 

  • Eliasson AC (1988) On the thermal transition of the amylose-cetyltrimethylammonium bromide complex. Carbohydr Res 172:83–95

    Article  CAS  Google Scholar 

  • Eliasson AC (1994) Interactions between starch and lipids studied by DSC. Thermochim Acta 246:343–356

    Article  CAS  Google Scholar 

  • Eliasson AC, Krog N (1985) Physical properties of amylose-monoglyceride complexes. J Cereal Sci 3:232–249

    Article  Google Scholar 

  • Eliasson AC, Larsson K, Miezis Y (1981) On the possibility of modifying the gelatinization properties of starch by lipid surface coating. Starke 33:231–235

    Article  Google Scholar 

  • Eliasson AC, Ljunger G (1988) Interactions between amylopectin and lipid additives during retrogradation in a model system. J Sci Food Agric 44:353–361

    Article  CAS  Google Scholar 

  • Evans ID (1986) An investigation of starch/surfactant interactions using viscometry and differential scanning calorimetry. Starke 38:227–235

    Article  CAS  Google Scholar 

  • Exarhopoulos S, Raphaelides SN (2012) Morphological and structural studies of thermally treated starch-fatty acid systems. J Cereal Sci 55(2):139–152

    Article  CAS  Google Scholar 

  • Faergemand M, Krog N (2005) Interactions of Emulsifers with Other Components in Foods. In: Gaonkar AG, McPherson A (eds) Ingredient Interactions: Effects on Food Quality. CRC Press, Boca Raton, pp 163–172.

    Google Scholar 

  • Farhat LA, Blanshard JMV (2001) Modeling the kinetics of starch retrogradation. In: Chinachoti P, Pand-Vodovotz V (eds) Bread staling. CRC Press, Boca Raton, pp 163–172

    Google Scholar 

  • Fast U, Lechert H (1990) Nuclear magnetic resonance investigation of water binding during wheat bread production with particular attention to emulsifer and hydrocolloid influences. Dtsch Lebensmitt Rundsch 86(11):355

    Google Scholar 

  • Favor HH, Johnston NR (1947) Effect of polyoxyethylene stearate on the crumb softening of bread. Cereal Chem 24:346–355

    CAS  Google Scholar 

  • Ferry AJ et al (2006) Viscosity and flavour perception: why is starch different from hydrocolloids. Food Hydrocoll 20(6):855–862

    Article  CAS  Google Scholar 

  • Gaonkar AG (1989) Interfacial tensions of vegetable oil-water systems: effect of oil purification. J Am Oil Chem Soc 66:1090–1097

    Article  CAS  Google Scholar 

  • Garti N et al (1999) Competitive adsorption of O/W emulsions stabilized by the new Portulaca Oleracea hydrocolloid and nonionic emulsifiers. Food Hydrocoll 13(2):139–144

    Article  CAS  Google Scholar 

  • Gelders GG, Duyck JP, Goesaert H, Delcour JA (2005) Enzyme and acid resistance of amylose-lipid complexes differing in amylose chain length, lipid and complexation temperature. Carbohydr Polym 60(3):379–389

    Article  CAS  Google Scholar 

  • Gelders GG, Goesaert H, Delcour JA (2006) Amylose-lipid complexes as controlled lipid release agents during starch gelatinization and pasting. J Agric Food Chem 54(4):1493–1499

    Article  CAS  PubMed  Google Scholar 

  • Ghiasi K, Hoseney RC, Varriano-Marson E (1982a) Gelatinization of wheat starch. I. Excess-water systems. Cereal Chem 59:81–85

    CAS  Google Scholar 

  • Ghiasi K, Hoseney RC, Varriano-Marson E (1982b) Gelatinization of wheat starch. III. Comparison by differential scanning calorimetry and light microscopy. Cereal Chem 59:258–262

    Google Scholar 

  • Ghiasi K, Varriano-Marson E, Hoseney RC (1982) Gelatinization of wheat starch. II. Starch-surfactant interaction. Cereal Chem 59:86–88

    CAS  Google Scholar 

  • Ghosh V et al (2005) Moisture migration through chocolate-flavored confectionery coatings. J Food Eng 66(2):177–186

    Article  Google Scholar 

  • Godet MC, Buleon A, Tran V, Colonna P (1993) Structural features of fatty acid-amylose complexes. Carbohydr Polym 21(2/3):91–95

    Article  CAS  Google Scholar 

  • Gray VM, Schoch TJ (1962) Effects of surfactants and fatty adjuncts on the swelling and solubilization of granular starches. Starke 14:239–246

    Article  CAS  Google Scholar 

  • Greenwood CT (1976) Starch. In: Pomeranz Y (ed) Advances in cereal science and technology, vol 1. American Association of Cereal Chemists, St. Paul, MN, pp 119–157

    Google Scholar 

  • Groves K (2005) Microscopy: A tool to study ingredient interactions in food. In: Gaonkar AG, McPherson A (eds) Ingredient interactions: effects on food quality. CRC Press, Boca Raton, pp 21–49

    Chapter  Google Scholar 

  • Gudmundsson M (1992) Effects of an added inclusion-amylose complex on the retrogradation of some starches and amylopectin. Carbohydr Polym 17:299–304

    Article  CAS  Google Scholar 

  • Gudmundsson M, Eliasson A-C (1990) Retrogradation of amylopectin and the effects of amylose and added surfactants and emulsifiers. Carbohydr Polym 13:295–315

    Article  CAS  Google Scholar 

  • Hahn DE, Hood LF (1987) Factors influencing corn starch/lipid complexing. Cereal Chem 64:81–85

    CAS  Google Scholar 

  • Hahnel W et al (1995) Investigations into the properties of emulsifiers in yeast leavened dough by means of infrared spectroscopy II: experiments on the interactions of emulsifiers with starch and flour in dough. Z Lebensm Unters Frosch 200:244–246

    Article  Google Scholar 

  • Hanna TG, Lelievre J (1975) An effect of lipid on the enzymatic degradation of wheat starch. Cereal Chem 52(5):697–701

    CAS  Google Scholar 

  • Heinemann C, Conde-Petit B, Nuessli J, Escher F (2001) Evidence of starch inclusion complexation with lactones. J Agric Food Chem 49:1370–1376

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Hernandez E, Avila-Orta CA, Hsiao BS, Castro-Rosas J, Gallegos-Infanta JA, Morales-Castro J, Ochoa-Martinex LA (2011) Synchrotron X-ray scattering analysis of the interaction between corn starch and an exogenous lipid during hydrothermal treatment. J Cereal Sci 54(1):69–75

    Article  CAS  Google Scholar 

  • Holm J et al (1983) Digestibility of the amylose/lipid complexes in vitro and in vivo. Starke 35:294–297

    Article  CAS  Google Scholar 

  • Hoover R, Hadziyev D (1981) Characterization of potato starch and its monoglyceride complexes. Starke 33:290–300

    Article  CAS  Google Scholar 

  • Ito T, Hasegawa W, Adachi T, Kojima M, Yamada T (2004) Effect of surfactant addition on viscosity profiles of starches. Scientific Reports of the Faculty of Agriculture – Meijo University 40:61–70

    CAS  Google Scholar 

  • Jane AL et al (1985) 13C NMR study of the conformation of helical complexes of amylodextrin and amylose in solution. Carbohydr Res 140:21–35

    Article  CAS  PubMed  Google Scholar 

  • Johansson D, Bergenstahl B (1992a) The influence of food emulsifiers on fat and sugar dispersions in oils: 1. Adsorption sedimentation. J Am Oil Chem Soc 69:705–717

    Article  CAS  Google Scholar 

  • Johansson D, Bergenstahl B (1992b) The influence of food emulsifiers on fat and sugar dispersions in oils: 2. Rheology, colloidal forces. J Am Oil Chem 69:718–727

    Article  CAS  Google Scholar 

  • Johansson D, Bergenstahl B (1992c) The influence of food emulsifiers on fat and sugar dispersions in oils: 3. Water content, purity of oils. J Am Oil Chem Soc 69:728–733

    Article  CAS  Google Scholar 

  • Johnson JM et al (1990) Lipid binding of modified corn starches studied by electron spin resonance. Cereal Chem 67:236–240

    CAS  Google Scholar 

  • Jovanovich G, Zamponi RA, Lupano CE, Anon MC (1992) Effect of water content on the formation and dissociation of the amylose-lipid complex in wheat flour. J Agric Food Chem 40:1780–1793

    Article  Google Scholar 

  • Karkalas J, Raphaelides S (1986) Quantitative aspects of amylose-lipid interactions. Carbohydr Res 157:214–234

    Article  Google Scholar 

  • Keetels CJAM, van Vliet T, Jurgens A, Walstra P (1996) Effects of lipid surfactants on the structure and mechanics of concentrated starch gels and starch bread. J Cereal Sci 24(1):33–45

    Article  CAS  Google Scholar 

  • Kim HR, Eliasson AC, Larsson K (1992) Dynamic rheological studies on an interaction between lipid and various native and hydroxypropyl potato starches. Carbohydr Polym 19(3):211–218

    Article  CAS  Google Scholar 

  • Kim H-O, Hill RD (1985) Effect of cycloheptaamylose on starch/lipid interaction. In: Hill RD, Munck L (eds) New approaches to research on cereal carbohydrates. Elsevier, Amsterdam, pp 81–88

    Google Scholar 

  • Kim YJ, Robinson RJ (1979) Effect of surfactants on starch in a model system. Starke 31:293–300

    Article  CAS  Google Scholar 

  • Kim CS, Walker CE (1992) Changes in starch pasting properties due to sugars and emulsifiers as determined by viscosity measurements. J Food Sci 57(4):1009–1013

    Article  CAS  Google Scholar 

  • Krog N (1971) Amylose complexing effect of food grade emulsifiers. Starke 23:206–210

    Article  CAS  Google Scholar 

  • Krog N (1973) Influence of food emulsifiers on pasting temperature and viscosity of various starches. Starke 25:22–27

    Article  CAS  Google Scholar 

  • Krog N, Nybo-Jensen B (1970) Interaction of monoglycerides in different physical states with amylose and their anti-firming effects in bread. J Food Technol 5:77–87

    Article  CAS  Google Scholar 

  • Kugimiya M, Donovan JW (1981) Calorimetric determination of the amylose content of starches based on formation of the amylose-lysolecithin complex. J Food Sci 46:765–777

    Article  CAS  Google Scholar 

  • Kulp K, Ponte JG (1981) Staling of white pan bread – fundamental causes. Crit Rev Food Sci Nutr 15(1):1–48

    Article  CAS  PubMed  Google Scholar 

  • Lagendijk J, Pennings H (1970) Relation between complex formation of starch with monoglycerides and the firmness of bread. Cereal Sci Today 15:354–365

    Google Scholar 

  • Lai H-M (1998) 17O NMR and DSC for studying quality of Taro paste as affected by processing and storage. Lebens Wiss Technol 31(1):57–63

    Article  CAS  Google Scholar 

  • Lalush I, Bar H, Zakaria I, Eichler S, Shimoni E (2005) Utilization of amylose lipid complexes as molecular nanocapsules for conjugated linoleic acid. Biomacromolecules 6:121–130

    Article  CAS  PubMed  Google Scholar 

  • Lamberti M et al (2004) Starch transformation and structure development in production and reconstitution of potato flakes. Lebensm Wiss Technol 37(4):417–427

    Article  CAS  Google Scholar 

  • Lamberts L, Gomand SV, Derycke V, Delcour JA (2009) Presence of amylose crystallites in parboiled Rice. J Agric Food Chem 57(8):3210–3216

    Article  CAS  PubMed  Google Scholar 

  • Larsson K (1980) Inhibition of starch gelatinization by amylose/lipid complex formation. Starke 32:125–126

    Article  CAS  Google Scholar 

  • Lin S et al (1990) Effects of pH, sodium chloride, polysaccharides, and surfactants on the pasting characteristics of pea flours (Pisum sativum). Cereal Chem 67(1):14–19.

    Google Scholar 

  • Lopes de Silva JA et al (2002) Effects of gelatinization and starch-emulsifier interactions on aroma release from starch-rich model systems. J Agric Food Chem 50(7):1076–1084

    Google Scholar 

  • Lund D (1984) Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization. CRC Crit Rev Food Sci Nutr 20(4):249–273

    Article  CAS  Google Scholar 

  • Lundqvist H, Eliasson A-C, Olofsson G (2002a) Binding of hexadecyltrimethylammonium bromide (CTAB) to starch polysaccharides. Part I. surface tension measurements. Carbohydr Polym 49:43

    Article  CAS  Google Scholar 

  • Lundqvist H, Eliasson A-C, Olofsson G (2002b) Binding of hexadecyltrimethylammonium bromide (CTAB) to starch polysaccharides. Part II Calorimetric study. Carbohydr Polym 49:109–120

    Article  CAS  Google Scholar 

  • Maier HC et al (1987) Thermostable binding of aroma compound to starch I: binding by freeze drying. Starke 39:126–131

    Article  CAS  Google Scholar 

  • Matsunaga A, Kainoma K (1986) Studies on the retrogradation of starch in starchy foods, part 3: effect of the addition of sucrose fatty acid ester on the retrogradation of corn starch. Starke 38:1–6

    Article  CAS  Google Scholar 

  • McClements DJ (2004) Emulsion rheology. Food emulsions: principles, practices and techniques. CRC Press, Boca Raton, pp 341–388

    Chapter  Google Scholar 

  • Mettler EA (1992) The effect of emulsifiers and hydrocolloids in the optimization of the functional properties of wheat breads: part 7, optimization for wheat flour bread. Getreide Mehl und Brot 46(8):234–241

    CAS  Google Scholar 

  • Mikus FF et al (1946) The complexes of fatty acids with amylose. J Am Chem Soc 168:1115–1123

    Article  Google Scholar 

  • Miles MJ et al (1985) The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr Res 135:271–281

    Article  CAS  Google Scholar 

  • Mira I (2006) Interactions between surfactants and starch: from starch granules to amylose solutions. Ph.D. Dissertation. The Royal Institute of Technology. Stockholm, Sweden

    Google Scholar 

  • Mitchell WA, Zillman E (1951) The effect of fatty acids on starch and flour viscosity. Trans Am Assoc Cereal Chem 9:64–79

    CAS  Google Scholar 

  • Mitolo JJ (2005) Starch selection and interaction in foods. In: Gaonkar AG, McPherson A (eds) Ingredient interactions: effects on food quality. Boca Raton, CRC Press, pp 140–164

    Google Scholar 

  • Miura M et al (1992) Influence of addition of polyols and food emulsifiers on the relative retrogradation rate of starch. Food Struct 11:225–236

    CAS  Google Scholar 

  • Moorthy SN (1985) Effect of different types of surfactants on cassava starch properties. J Agric Food Chem 33:1227–1233

    Article  CAS  Google Scholar 

  • Morrison WR, Tester RF, Snape CE, Law R, Gidley MJ (1993) Swelling and gelatinization of cereal starches. IV. Some effects of lipid-complexed amylose and free amylose in waxy and normal barley starches. Cereal Chem 70:385–391

    CAS  Google Scholar 

  • Murray SM, Patil AR, Fahey GC, Merchen NR, Wolf BW, Lai CS, Garleb KA (1998) Apparent digestibility of a debranched amylopectin-lipid complex and resistant starch incorporated into enteral formulas fed to ileal-cannulated dogs. J Nutr 128:2032–2035

    Article  CAS  PubMed  Google Scholar 

  • Navarro AS et al (1996) Modeling of rheological behavior in starch-lipid systems. Lebensm Wiss Technol 29(7):632–639

    Article  CAS  Google Scholar 

  • Neszmelyi A et al (1987) Bimolecular modeling as an interactive program for the visualization and modeling of carbohydrate (starch and oligosaccharide) complexes in isolation. Starke 39:393–396

    Article  CAS  Google Scholar 

  • Nolan NL et al (1986) An Electron spin resonance study of native and gelatinized starch systems. Cereal Chem 63:287–291

    CAS  Google Scholar 

  • Nuesslil J et al (2000) Rheology and structure of amylopectin potato starch dispersions without and with emulsifier addition. Starke 52(1):22–27

    Article  Google Scholar 

  • Numfor FA, Walter Jr WM, Schwartz SJ (1996) Effect of emulsifiers on the physical properties of native and fermented cassava starches. J Agric Food Chem 44:2595–2599

    Article  CAS  Google Scholar 

  • O’Brien RD (2004) Fats and oils: formulating and processing for application2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Olkku T, Rha C (1978) Gelatinization of starch and wheat flour, a review. Food Chem 3:293–317

    Article  CAS  Google Scholar 

  • Olsson C, Langton M, Stading M, Hermansson AM (2003) Microstructural evolution of mixed gels and their rheological behavior. Food colloids, biopolymers, and materials, vol 284. Royal Society of Chemistry, London, pp 26–34

    Google Scholar 

  • Osman EM (1967) Starch in the food industry. In: Whistler RL, Paschall EF (eds) Starch: chemistry and technology, vol 2. Academic Press, New York, pp 163–215

    Google Scholar 

  • Osman EM, Dix MR (1960) Effect of fat and nonionic surface-active agents on starch pastes. Cereal Chem 37:464–475

    CAS  Google Scholar 

  • Osman E et al (1961) Complexes of amylose with surfactants. Cereal Chem 38:440–463

    Google Scholar 

  • Parvar MB, Razavi SMA (2012) Rheological interactions of selected hydrocolloid-sugar-milk-emulsifier systems. Int J Food Sci Technol 47:854–860

    Article  CAS  Google Scholar 

  • Paton D (1987) Differential scanning calorimetry of oat starch paste. Cereal Chem 164:384–389

    Google Scholar 

  • Pearce LM et al (1985) Application of electron spin resonance techniques to model starch systems. Food Microstruct 4:83–88

    CAS  Google Scholar 

  • Pomeranz Y et al (1969) Improving bread-making properties with glycolipids I: improving soy products with sucroesters. Cereal Chem 46:503–511

    CAS  Google Scholar 

  • Preininger M (2005) Interactions of flavor components in foods. In: Gaonkar AG, McPherson A (eds) Ingredient interactions: effects on food quality. CRC Press, Boca Raton, pp 499–503

    Google Scholar 

  • Putseys JA, Derde LJ, Lamberts L, Ostman E, Bjorck IM, Delcour JA (2010) Functionality of short chain amylose-lipid complexes in starch-water systems and their impact on in vitro starch degradation. J Agric Food Chem 58:1939–1945

    Article  CAS  PubMed  Google Scholar 

  • Putseys JA, Lamberts L, Delcour JA (2010) Amylose-inclusion complexes: formation, identity and physico-chemical properties. J Cereal Sci 51:238–247

    Article  CAS  Google Scholar 

  • Raksaphol S (2009) The effect of processing parameters on textural properties of sweet Taro paste. MS thesis. Silpakorn University, Bangkok, TH

    Google Scholar 

  • Raphaelides SN, Georgiadis N (2006) Effect of fatty acids on the rheological behaviour of maize starch dispersions during heating. Carbohydr Polym 65:81–92

    Article  CAS  Google Scholar 

  • Raphaelides SN, Karkalas J (1988) Thermal dissociation of amylose-fatty acid complexes. Carbohydr Res 172:65–82

    Article  CAS  Google Scholar 

  • Reimer R, et al. (1993) Ionic Complexes of Ionizable Emulsifiers with Ionizable Polypeptides and/or Ionizable Hydrocolloids. PCT Int. Appl. WO 9321784, Nov 11, Pfizer, Inc. USA, p 37

    Google Scholar 

  • Ribotta PD et al (2004) Effect of emulsifier and guar gum on microstructural, rheological, and baking performance of frozen bread dough. Food Hydrocoll 18(2):305–313

    Article  CAS  Google Scholar 

  • Richardson G, Kidman S, Langton M, Hermansson A-M (2004) Differences in amylose aggregation and starch gel formation with emulsifiers. Carbohydr Polym 58(1):7–13

    Article  CAS  Google Scholar 

  • Richardson G, Langton M, Bark A, Hermansson A-M (2003) Wheat starch gelatinization – the effects of sucrose, emulsifier and physical state of the emulsifier. Starch/Stärke 55:150–161

    Article  CAS  Google Scholar 

  • Rilsom T et al (1984) Amylose-complexing capacity of cis and trans unsaturated Monoglycerides in relation to their functionality in bread. J Cereal Sci 2:105–118

    Article  Google Scholar 

  • Ring SC (1985) Some studies on starch gelation. Starke 37:80–83

    Article  CAS  Google Scholar 

  • Roach RR, Hoseney RC (1995a) Effect of certain surfactants on the swelling, solubility, and amylograph consistency of starch. Cereal Chem 72:571–577

    CAS  Google Scholar 

  • Roach RR, Hoseney RC (1995b) Effect of certain surfactants on the starch in bread. Cereal Chem 72:578–587

    CAS  Google Scholar 

  • Rouset P et al (2002) Effect of emulsifiers on surface properties of sucrose by inverse gas chromatography. J Chromatogr A 969(1–2):97–101

    Article  Google Scholar 

  • Rutschmann MA, Solms J (1990a) Flavors and off-flavors. Developments in food science. Elsevier, Amsterdam, pp 991–1010

    Google Scholar 

  • Rutschmann MA, Solms J (1990b) Formation of inclusion complexes of starch with different organic compounds. 2. Study of ligand binding in binary model systems with decanal, 1-naphthol, monostearate and monopalmitate. Food Sci Technol 23:70–79

    CAS  Google Scholar 

  • Sakivan O et al (2004) Influence of fat content and emulsifier type on the rheological properties of cake batter. J Euro Food Res Technol 219(6):635–638

    Article  CAS  Google Scholar 

  • Sawa K, Inoue S, Lysenko E, Edwards NM, Preston KR (2009) Effects of purified monoglycerides on Canadian short process and sponge and dough mixing properties, bread quality and crumb firmness during storage. Food Chem 115:884–890

    Article  CAS  Google Scholar 

  • Schmidt E, Maier HC (1987) Thermostable binding of aroma compound to starch II: binding of menthol by autoclaving. Starke 39:203–207

    Article  CAS  Google Scholar 

  • Schoch TJ, French D (1947) Studies on bread staling I: the role of starch. Cereal Chem 24:231–249

    CAS  Google Scholar 

  • Schoch TJ, Williams C (1944) Adsorption of fatty acid by the linear component of corn starch. J Am Chem Soc 66:1232–1233

    Article  CAS  Google Scholar 

  • Seetharamass K et al (2004) Role of water in pretzel dough development and finished product quality. Cereal Chem 81:336–340

    Article  Google Scholar 

  • Servais C et al (2004) Determination of chocolate viscosity. J Texture Study 34:467–497

    Article  Google Scholar 

  • Seyhun N et al (2003) Effects of different emulsifier types, fat contents, and gum types on the retardation of staling of microwaved cakes. Nahrung/Food 47(4):2480251

    Article  Google Scholar 

  • Singh J, Dartois A, Kaur L (2010) Starch digestibility in food matrix: a review. Trends Food Sci Technol 21:168–180

    Article  CAS  Google Scholar 

  • Siswoyo TA, Morita N (2003) Thermal properties of partially hydrolyzed starch glycerophosphatidylcholine complexes with various acyl chains. J Agric Food Chem 51:3162–3167

    Article  CAS  PubMed  Google Scholar 

  • Snape CE, Morrison WR, Maroto-Valer MM, Karkalas J, Pethrick RA (1998) Solid state C-13 NMR investigation of lipid ligands in V-amylose inclusion complexes. Carbohydr Polym 36:225–237

    Article  CAS  Google Scholar 

  • Staeger G et al (1988) Formation of starch inclusion compounds during extrusion cooking. In: Charalamhous G (ed) Frontiers of Flavor. Elsevier, Amsterdam, pp 639–654

    Google Scholar 

  • Stampfli L, Nersten B (1995) Emulsifiers in bread making. Food Chem 52:353–360

    Article  CAS  Google Scholar 

  • Strandine EF et al (1951) Effect of monoglycerides on starch, flour, and bread: a microscopic and chemical study. Cereal Chem 28:449–462

    CAS  Google Scholar 

  • Stute VRK, Konieczny-Janda G (1983) DSC investigation of starches, part II: investigations of starch/lipid complexes. Starke 35:340–347

    Article  CAS  Google Scholar 

  • Szezodrak J, Pomeranz Y (1992) Starch lipid interactions and formation of resistant starch in high amylose barley. Cereal Chem 69(6):626–632

    Google Scholar 

  • Takase S, Goda T, Watanabe M (1994) Monostearoylglycerol-starch complex: its digestibility and effects on glycemic and lipogenic responses. J Nutr Sci Vitaminol 40:23–36

    Article  CAS  PubMed  Google Scholar 

  • Tang MC, Copeland L (2007) Analysis of complexes between lipids and wheat starch. Carbohydr Polym 67:80–85

    Article  CAS  Google Scholar 

  • Tang H et al (2005) Functionality of starch granules in milling fractions of normal wheat grain. Carbohydr Polym 59(1):11–17

    Article  CAS  Google Scholar 

  • Tietz M (2007) Starch-flavour interactions: impact on flavour retention and release in model food systems. Ph.D. Dissertation. ETH Zürich, Zurich, CH

    Google Scholar 

  • Titoria PM, et al. (2004) Starch-emulsifier gelling systems: applications in pastilles and yoghurts. Research Report RR850, Leatherhead Food International, Ltd.

    Google Scholar 

  • Toro-Vazquez JF, Gomez-Aldapa CA, Aragon-Pina A, la Fuente B-d, Dibildox-Alvarado E, Charo-Alonso M (2003) Interaction of granular maize starch with lysophosphatidylcholine evaluated by calorimetry, mechanical and microscopy analysis. J Cereal Sci 38:269–279

    Article  CAS  Google Scholar 

  • Tufvesson F, Wahlgren M, Eliasson AC (2003a) Formation of amylose-lipid complexes and effects of temperature treatment. Part 1. Monoglycerides. Starke 55(2):61–71

    Article  CAS  Google Scholar 

  • Tufvesson F, Wahlgren M, Eliasson AC (2003b) Formation of amylose-lipid complexes and effects of temperature treatment. Part 2. Fatty acids. Starke 55(3–4):138–149

    Article  CAS  Google Scholar 

  • Twillman TJ, White RJ (1988) Influence of monoglycerides on the textural shelf life and dough rheology of corn tortillas. Cereal Chem 65:253–257

    CAS  Google Scholar 

  • Valletta RM, Germino FJ, Lang RE, Moshy RJ (1964) Amylose ‘V’ complexes: low molecular weight primary alcohols. J Polym Sci A 2:1085–1094

    Google Scholar 

  • Van Lonkhuysen H, Blankestijn J (1974) Interaction of monoglycerides with starches. Starke 26:337–343

    Article  Google Scholar 

  • Vilhelmson O, Miller K (2002) Humectant permeability influences growth and compatible solute uptake by Staphylococcis aureus subjected to osmotic stress. J Food Prot 65(6):1008–1015

    Article  Google Scholar 

  • Warshaw HS, Kukami K (2004) ADA complete guide to carb counting. American Diabetes Association, Alexandria, VA

    Google Scholar 

  • Xu A, Ponte Jr JG, Chung OK (1992) Bread crumb amylograph studies II: cause of unique properties. Cereal Chem 69(5):502–507

    CAS  Google Scholar 

  • Zobel HF (1984) Gelatinization of starch and mechanical properties of starch pastes. In: Whistler RL, BeMIller JN, Paschall EF (eds) Starch: chemistry and technology, vol 2. Academic Press, Boca Raton, pp 285–311

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn B. Deffenbaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deffenbaugh, L.B. (2019). Emulsifier-Carbohydrate Interactions. In: Hasenhuettl, G., Hartel, R. (eds) Food Emulsifiers and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-29187-7_4

Download citation

Publish with us

Policies and ethics