Skip to main content

Synthesis and Commercial Preparation of Food Emulsifiers

  • Chapter
  • First Online:
Book cover Food Emulsifiers and Their Applications

Abstract

Natural emulsifiers such as casein, egg yolk, and lecithin are extracted and commercially processed for use in foods. Emulsifiers are also chemically or enzymatically synthesized from natural materials. Structural design of emulsifiers may be accomplished by chemical or enzymatic modification of natural materials. Chemical reactions are generally carried out at high temperatures to overcome low mutual solubility of the reactants. Side reactions may cause undesirable byproducts leading to dark colors, as well as odors and off-flavors. Enzymatic modifications can be performed at lower temperatures, but suffer from high costs and problems with solubility.

Commercial processes may be either batch or continuous. Batch processes are best suited to a wide product range and smaller batch sizes. Continuous processes are better for a narrow product range and larger scale production. Reactor design is critical for emulsifier production of food emulsifiers having high quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akoh C, Swanson B (1994) Carbohydrate polymers and fat substitutes. Marcel Dekker, New York

    Google Scholar 

  • Allen RR, Campbell RL (1967) Process for the manufacture of fatty acid esters. U.S. Patent 3,313,834. Anderson Clayton Co., Houston, TX

    Google Scholar 

  • Anon (1983) Sodium stearoyl 2-Lactylate. India Pat. 148301, Council for Scientific & Industrial Research India

    Google Scholar 

  • Aoi N (1995) Preparation of fatty acid esters of fractionated polyglycerin as emulsifiers. Japan Pat. 07218560A, Toiyo Kogaku KK

    Google Scholar 

  • Aracil-Mira JAE (2000) Producing fatty acid esters of diacetyltartaric acid using biocatalysis. Spain Pat. ES2146162, Universidad Complutense

    Google Scholar 

  • Arcos JA et al (2000) Continuous enzymatic esterification of glycerol with polyunsaturated fatty acids in a packed bed reactor. Biotechnol Bioeng 68(5):563–570

    Article  CAS  PubMed  Google Scholar 

  • Bade V (1978) Process for the manufacture of citric acid esters of partial fatty acid glycerides. U. S. Pat. 4071,544

    Google Scholar 

  • Belitz HD, Werne G, Schienberle P (2004a) Food chemistry. Springer, Berlin

    Book  Google Scholar 

  • Belitz HD, et al. (2004b) Food chemistry. Springer, p 515, Table 510.511

    Google Scholar 

  • Brumley WC (1985) Characterization of polysorbates by OH-negative ion chemical ionization mass spectrometry. J Agric Food Chem 33(3):368–372

    Article  CAS  Google Scholar 

  • Cawley C, Grad YM (1969) Preparation of monoglyceride phosphoric acid and salts thereof. U. S. Patent 3, 423–440: 3 423–440

    Google Scholar 

  • Charlemange D, Legoy MD (1995) Enzymic synthesis of polyglycerol fatty acid esters in a solvent-free system. J Am Oil Chem Soc 72(1):61–65

    Article  Google Scholar 

  • Charles G et al (2003) Preparation of diglycerol and triglycerol via direct polymerization of glycerol with basic mesoporous catalysts. Oleagineux Corps Gras Lipides 19(1):74–82

    Article  Google Scholar 

  • Chen H-C et al (2012) Product selectivity and optimization of lipase-catalyzed 1,3-propylene glycol esters by mixture design and RSM. J Am Oil Chem Soc 89:231–241

    Article  CAS  Google Scholar 

  • Chou C-C (2013) Enzymatic production of monoglycerides. Global Pat. Aug. 22, 2013, Sunho Biodiesel America Ltd., p 17

    Google Scholar 

  • Christiansen K, Creemers V (2008) Preparation of 2-isomers of propylene glycol monoesters. Global, p 8

    Google Scholar 

  • Clare DA, Daubert CR (2010) Transglutaminase catalysis of modified whey protein dispersions. J Food Sci 75(4):C369–C377

    Article  CAS  PubMed  Google Scholar 

  • Clare DA, Daubert CR (2011) Expanded functionality of modified whey protein dispersions after transglutaminase catalysis. J Food Sci 76:C76–C84

    Article  CAS  Google Scholar 

  • Elsner AE et al (1989) Synthesis and characterization of sucrose fatty acid polyesters. Nahrund 33(9):845–851

    CAS  Google Scholar 

  • Eng S (1972) Producing lactylic acid esters of fatty acids. U. S. Pat. 3 636 017, GLYCO, INC.

    Google Scholar 

  • Esbuis CRV, et al. (1984) Polymerization of glycerol using zeolite catalysis. Global pat. PCT WO 9418256, Unichema Chemie BV

    Google Scholar 

  • Fittermann J et al (2012) Co-melting solid Sucrose and multivalent soaps for solvent-free synthesis of sucrose esters. Tetrahedron Lett 48(23):4111–4113

    Article  CAS  Google Scholar 

  • Franzke C, Knoll J (1980) Zur enzymatischen Milchsäurebestimmung in Emulgatoren. Nahrung 24(1):89–90

    Article  CAS  Google Scholar 

  • Freund EH (1968) Composition comprising succinyl half esters. US Pat. 3,370,958. National Dairy Products Co.

    Google Scholar 

  • Furuya N, et al. (1992) Stabilization of polyoxyethylene sorbitan esters. Japan Pat. JP 04108781, A2 Nipon Yushi K.K

    Google Scholar 

  • Gaonkar AG, McPherson A (eds) (2006) Ingredient interactions: effects on food quality. CRC Press/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Garti N, Asarin A (1983) Analysis of sorbitan fatty acid esters by HPLC. J Am Oil Chem Soc 60(6):1151–1154

    Article  CAS  Google Scholar 

  • Gladstone C (1960) Process of preparing esters of acetyl tartaric and citric acids. U. S. Pat. 2,938027, Wieco Chemical Co.

    Google Scholar 

  • Griffin WC (1945) U.S. Pat. 2, 380,166

    Google Scholar 

  • Gu K (2002) Study on solvent fractionation of soybean lecithin. Zhongguo Youzhi 27(1):31–33

    CAS  Google Scholar 

  • Guillard V et al (2004) Edible acetylated monoglycerid films: effect of film-forming technique on moisture barrier properties. J Am Oil Chem Soc 81(11):1053–1058

    Article  CAS  Google Scholar 

  • Ha JH et al (1987) Optimum conditions to esterify alginic acid. Hanlguk Susan Hakoechi 20(3):202–207

    CAS  Google Scholar 

  • Hadeball K et al (1986) Synthesis and properties of succinylated monoglycerides. Nahrung 30(2):209–211

    Article  CAS  Google Scholar 

  • Hari-Krishna S, Karanth N (2002) Lipase and lipase-catalyzed esterification reactions in nonaqueous media. Cat Rev 44(4):499–591

    Article  CAS  Google Scholar 

  • Hayes DG et al (2012) Modification of oligo-ricinoleic acid and its derivatives with 10-undecenoic acid via lipase-catalyzed esterification. Polymers 4:1037–1055

    Article  CAS  Google Scholar 

  • Hibino H, et al. (1989) Preparation of lysophosphatidylcholine by acylation of glycerophosphocholine. HCAPLUS 112: 217462. Japan Pat. JA 01311088 A2, Nippon Oils Fats. JA 01311088 A2

    Google Scholar 

  • Hibino H, et al. (1991) Hydrolysis of synthetic phosphatidycholine with phospholipase. Japan Pat. JP 03007589 A2, Nippon Oil Fats Co.

    Google Scholar 

  • Hoq MM et al (1985) Some characteristics of continuous glyceride synthesis by lipase in a microporous hydrophobic biomembrane reactor. Agric Biol Chem 49(2):335–342

    Article  CAS  Google Scholar 

  • Huang J et al (2012) Enzyme-catalyzed synthesis of citrate: kinetics and thermodynamics. J Am Oil Chem Soc 89:1627–1632

    Article  CAS  Google Scholar 

  • Karuma MSL et al (2013) A simple enzymatic approach for selective acylation of phosphatidylethanolamine. J Am Oil Chem Soc 90:369–375

    Article  CAS  Google Scholar 

  • Kasori Y, Taktabagai T (1997) Preparation of fatty acid sucrose esters for foods. Japan Pat. JP 09188690 A2, Mitsubishi Chemical Industries Ltd.

    Google Scholar 

  • Kazyulima M et al (1986) Production of phosphorus containing emulsifiers. Maslo-Zihr Prom-st 8:22–23

    Google Scholar 

  • Li YK et al (2003) Enzyme-catalyzed regioselective synthesis of sucrose esters. Yopp Huaxue 23(8):770–775

    Google Scholar 

  • Lim SEA (2002) Design issues of pervaporation membrane reactors for esterification membrane bioreactor design and kinetic model for reaction engineering and simulation: a review. Chem Eng Sci 57:22–23. 4943–4946

    Article  Google Scholar 

  • Marquez-Alvarez C et al (2004) Solid catalysis for the synthesis of esters of glycerol, polyglycerols and sorbitol from renewable resources. Top Catal 27:105–117

    Article  CAS  Google Scholar 

  • Masashi S, et al. (2005) Method for producing phospholipid. U. S. Pat. 6,170,476A

    Google Scholar 

  • McDowell RH (1970) New reactions of proplene glycol alginate. J Soc Cosmet Chem 21:441–457

    CAS  Google Scholar 

  • McDowell RH (1975) New developments in the chemistry of alginates and their use in foods. Chem Ind 9:391–395

    Google Scholar 

  • Montero JB et al (2003) Lipase catalyzed synthesis of monoacylglycerol in a homogeneous system. Biotechnol Lett 25(8):641–644

    Article  Google Scholar 

  • Morgado MA et al (1995) Hydrolysis of lecithin by phospholipase A2 in mixed reversed micelles. J Chem Technol Biotechnol 63(2):181–189

    Article  CAS  Google Scholar 

  • Murakama C et al (1989) Determination of sucrose esters of fatty acids by high performance liquid chromatography. Shokuhin Easeigaku Zasshi 30(4):306–313

    Article  Google Scholar 

  • Nakamura T et al (1986) Sucrose fatty acid esters – reaction at atmospheric pressure. Inf Int 18(37):8–13

    CAS  Google Scholar 

  • Nielson V et al (1971) Propylene glycol alginate. German Pat; DE 2641303. Merck & Company, House Station, NJ

    Google Scholar 

  • Noto VH, Petit DJ (1972) Propylene glycol alginate. M. Co. German Pat. DE 2641303

    Google Scholar 

  • Okumura H et al (2001) Determination of sucrose fatty acid esters by high performance liquid chromatography. J Oleo Sci 50(4):249–254

    Article  CAS  Google Scholar 

  • Ortega J et al (2013) Biocatalytic synthesis of polyglycerol polyricinoleate: a comparison of different commercial lipases. Chem Biochem Eng Q 27(4):439–448

    CAS  Google Scholar 

  • Palacios LE, Wang T (2005) Egg-yolk lipid fractionation and lecithin characterization. J Am Oil Chem Soc 82(8):571–578

    Article  CAS  Google Scholar 

  • Paolucci-Jeaniean D (2005) Biomolecule applications for membrane-based phase contacting systems. Chem Eng Res Des 83(A3):302–308

    Article  CAS  Google Scholar 

  • Patterson VDE et al (1984) Continuous synthesis of glycerides by lipase in a microporous membrane bioreactor. Ann NY Acad Sci 434:558–568

    Article  Google Scholar 

  • Polouae J, Gelis A (1844). Ann Chem Phys 10:434

    Google Scholar 

  • Ranny M, et al. (1989) Manufacture of phosphorylated mono- and diaclglycerols for use as food emulsifiers. Czechoslovakia Pat. CS 256691 B1

    Google Scholar 

  • Reynold SRC, Chappel CJ (1998) Sucrose acetate isobutyrate (SAIB): historical aspects of its use in beverages and a review of toxicity studies prior to 1988. Food Chem Toxicol 36(2):81–93

    Article  Google Scholar 

  • Sahasrabuddhe MR, Chadha RK (1969) Chromatographic analysis of sorbitan fatty acid esters. J Am Oil Chem Soc 46(1):8–12

    Article  Google Scholar 

  • Sax NI, Lewis R (1999) Succinic anhydride. Dangerous properties of industrial materials, vol III. Van Nostrand Reinhold, New York, pp 3131–3132

    Google Scholar 

  • Schoerken U, et al. (2008) Preparation and use of monoglycerrides. US Pat. Appl. 20080045606

    Google Scholar 

  • Schuetze T (1977) Analytische Charakterisierung von Polyglycerinester-Emulgatoren. Nahrung 21(5):405–415

    Article  CAS  Google Scholar 

  • Schuyl PJW, Platerink V (1994) Analysis of sucrose polyesters with electrospray mass spectrometry42nd edn. A.S.M.S. Conference on Mass Spectrometry, Chicago, IL

    Google Scholar 

  • Shmidt AA et al (1976) Synthesis of lactylated monoglycerides. Masolzhironyaya Promyshlennost 10:19–20

    Google Scholar 

  • Sietze FG (1982). Seifen Oele Fette Wachse 108(20):637–639

    Google Scholar 

  • Sigfried P, Weidner E (2005) Process for the transesterification of fats and oils by means of alcoholysis. U. S. Pat 5,933 398 B2

    Google Scholar 

  • Song C l, Zhao XH (2013) The preparation of an oligochitosan-glycosylated and cross-linked caseinate obtained by a microbial transglutaminase and its functional properties. Int J Dairy Technol 67(1):110–166

    Article  CAS  Google Scholar 

  • Stockburger G (1981) Process for preparing Sorbitan esters. U. S. Pat 4 297 290, ICI Americas, Inc.

    Google Scholar 

  • Strong CH (1976) Alkylene glycol alginates. Ger. Pat. DE 2529086, Uniroyal Ltd.

    Google Scholar 

  • Swanson S, Swanson BG (1999) Alkyl and acyl sugars. In: Gunstone FD (ed) Lipid synthesis and manufacture. Academic Press/CRC Press, Sheffield, pp 347–370

    Google Scholar 

  • Szabo I, et al. (1977) Investigations on the new preparation possibilities of span 80 tween 80. Appl Chem. Budapest Magy, Kem Egyesulete

    Google Scholar 

  • Szuhaj BF (2005) In: Shahidi F (ed) Lecithins bailey’s industrial oil and fat products, vol 3. Wiley, New York, pp 361–456

    Google Scholar 

  • Thompson, A., Boland, M., Harjinder Singh (2009). Milk proteins: from expression to food Amsterdam Elsevier/Academic Press

    Google Scholar 

  • Thum O, et al. (2009) Process for enzymatically preparing carboxylic esters. U. S. Pat. Appl. 12/354,163, Evonik Goldschmidt GmbH.

    Google Scholar 

  • Udajari S (1996) Ethylene oxide. The Merck index. Merck & Co., Whitehouse Station, NJ, p 1349

    Google Scholar 

  • Wagner FW, et al. (1990) Preparation of sucrose fatty acid esters having a degree of polymerization up to 2. U. S. Pat. 4,927,920, Nebraska Dept. of Economic Development

    Google Scholar 

  • Waldinger C, Schneider M (1996) Enzyme esterification of glycerol III: LIpase-catalyzed synthesis of regiomerically pure 1,3 and diglycerides and 1,3-rac-monoglyceridesl derived from unsaturated fatty acids. J Am Oil Chem Soc 73(11):1513–1519

    Article  CAS  Google Scholar 

  • Wee H et al (2013) Hierarchical zeolite imidazolate framework-8 catalyst for monoglyceride synthesis. ChemCatChem 5(12):3652–3656

    Article  CAS  Google Scholar 

  • Wilson DC (1999) Continuous process for the synthesis of sucrose fatty acid esters. U. S. Pat. 5 872 245, Optima Technologies Group

    Google Scholar 

  • Yamane T et al (1984) Continuous synthesis of glycerides by lipase in a microporous membrane bioreactor. Ann N Y Acad Sci 434:558–568

    Article  CAS  Google Scholar 

  • Ye R, Hayes DG (2012) Lipase-catalyzed synthesis of saccharide-fatty acid esters utilizing solvent-free suspensions: effect of acyl donors and acceptors, and enzyme activity retention. J Am Oil Chem Soc 89:455–463

    Article  CAS  Google Scholar 

  • Ye R et al (2014) Effects of particle size of sucrose suspensions and pre-incubation of enzyme on lipase-catalyzed synthesis of sucrose oleic acid esters. J Am Oil Chem Soc 91:1891–1901

    Article  CAS  Google Scholar 

  • Yiiksel Z, Erdem YK (2009) Modification of bovine milk protein systems by transglutaminase. GIDA 34(6):345–350

    Google Scholar 

  • Yin W et al (2012) A casein-polysaccharide hybrid hydrogel cross-linked by transglutaminase for drug delivery. J Mater Sci 47:2045–2055

    Article  CAS  Google Scholar 

  • Zhao R et al (2014) Heterogeneous base-catalytic transesterification synthesis of sucrose esters and parallel reaction control. Int J Food Sci Technol 49(3):854–860

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasenhuettl, G.L. (2019). Synthesis and Commercial Preparation of Food Emulsifiers. In: Hasenhuettl, G., Hartel, R. (eds) Food Emulsifiers and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-29187-7_2

Download citation

Publish with us

Policies and ethics