Skip to main content

Breast Cancer Receptors and Targeting Strategies

  • Chapter
  • First Online:
Book cover Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis

Abstract

Breast cancer (BC) is the most common cause of death among women worldwide. Characterized by heterogeneous nature, treatment of breast cancer becomes very challenging considering its late detection. Causes for breast cancer and their treatment modalities have been well identified; still management of disease is an uphill task due to complex pathophysiology associated with it. Chemotherapy has remained the mainstay for treatment of BC, although with advent of novel targeted therapies, a paradigm shift is seen in treatment options available for BC. Targeted regimes toward receptors expressed on tumorous surfaces are developed that deploy antibodies and peptides for treating BC. Moreover, with avoidance of side effects of chemotherapy with concomitant annihilation of cancerous cells, it is very imperative to understand the underlying mechanisms of receptors governing the process. Therefore, with an attempt toward comprehensive understanding of the subject, this chapter explores some of the important receptors involved in breast cancer such as estrogen receptor, progesterone receptor, and human epidermal receptor-2. Special emphasis is given for the modulation of their signal transduction mechanism attaining desired goals. Various formulation aspects that are currently undertaken toward BC management are also discussed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassettes

ADCC:

Antibody-dependent cell-mediated cytotoxicity

BC:

Breast cancer

EGFR:

Epidermal growth factor receptors

ER:

Estrogen receptor modulators

FISH:

Fluorescent in situ hybridization assay

HER-2:

Human epidermal growth factor receptor-2

IDC:

Invasive ductal carcinomas

IHC:

Immune Histochemical studies

ILC:

Invasive lobular carcinoma

MISS:

Membrane-assisted steroid signaling

NDDS:

Novel drug delivery systems

P-gp:

P-glycoprotein

PR:

Progesterone receptor

SERMs:

Selective estrogen receptor

TDM-1:

Trastuzumab emtansine

TNBC:

Triple-negative breast cancer

References

  1. Dieterich M, Reimer T, Berling A. Influence of lifestyle factors on breast cancer risk. Breast Care. 2014;9(6):407–14.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Care P. Assessment of suspected cancer. InnovAiT. 2008;1:94–107.

    Article  Google Scholar 

  3. Carney PA, Miglioretti DL, Yankaskas BC, Kerlikowske K, Rosenberg R, Rutter CM, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann. Intern. Med. 2015;138:168–175

    Article  PubMed  Google Scholar 

  4. Gui G. Male breast cancer: aetiology in the first of a two-part. Trends in Urology& Men’s Health. 2012;(3):29–31.

    Google Scholar 

  5. Yalaza M, İnan A, Bozer M. Male breast cancer. J Breast Health 2016;(4):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Reed AEM, Kutasovic JR, Lakhani SR, Simpson PT. Invasive lobular carcinoma of the breast: morphology, biomarkers and ’omics. Breast Cancer Res. 2015;17:1–11.

    Google Scholar 

  7. Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med (Lausanne). 2017;4:227.

    Article  Google Scholar 

  8. Übersichtsarbeit RA, Sinn H, Kreipe H. Breast care of breast tumors. 4th ed. Focusing. 2013;149–54.

    Google Scholar 

  9. Kumar R, Sharma A, Tiwari RK. Application of microarray in breast cancer: an overview. J Pharm Bioallied Sci. 2012;4(1):21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang M. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul). 2012;20(3):256–67.

    Article  CAS  Google Scholar 

  11. Athmanathan NP, Ilous AMIB. HER2 testing in breast cancer: an overview of current techniques and recent developments. Pathology. 2012;44(7):587–95.

    Article  CAS  Google Scholar 

  12. Furrer D, Sanschagrin F, Jacob S. Advantages and disadvantages of technologies for HER2 testing in breast cancer specimens. Am J Clin Pathol. 2015;144(5):686–703.

    Article  CAS  PubMed  Google Scholar 

  13. Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26(45):6469–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Graus-porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16(7):1647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tzahar E, Waterman H, Chen X, Levkowitz GIL, Karunagaran D, Lavi S, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996;16(10):5276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146(3):264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wahler J, Suh N. Targeting HER2 positive breast cancer with chemopreventive agents. Curr Pharmacol Rep. 2015;1(5):324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsang RY, Finn RS. Beyond trastuzumab: novel therapeutic strategies in HER2-positive metastatic breast cancer. Br J Cancer. 2012;106(1):6–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zagouri F, Bournakis E, Koutsoukos K, Papadimitriou CA. Heat shock protein 90 (Hsp90) expression and breast cancer. Pharmaceuticals (Basel). 2012;5(9):1008–20.

    Article  CAS  Google Scholar 

  20. Cameron DA, Stein S. Drug insight: intracellular inhibitors of HER2 — clinical development of lapatinib in breast cancer. Nat Clin Pract Oncol. 2008;5(9):512–20.

    Article  CAS  PubMed  Google Scholar 

  21. Chadha J, Stuart S. Targeted agents for HER2-positive breast cancer: optimal use in older patients. Drugs Aging. 2015;32(12):975–82.

    Article  CAS  Google Scholar 

  22. Tanner M, Kapanen AI, Carraway KL, Nagy P, Friedla E, Isola J, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res. 2005;65(2):473–83.

    PubMed  Google Scholar 

  23. Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012;2:1–7.

    Article  Google Scholar 

  24. Gagliato DDM, Leonardo D, Jardim F, Pereira MS, Hortobagyi GN. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2 + breast cancer introduction: pathways to trastuzumab. Oncotarget. 2016;7(39):64431–46.

    Article  Google Scholar 

  25. Rosenzweig SA. Therapeutics E. HHS public access. 2018;1–24.

    Google Scholar 

  26. Murphy L, Cherlet T, Lewis A, Banu Y, Watson P, Murphy L, et al. New insights into estrogen receptor function in human breast cancer. Ann. Med. 2015;3890:614–631.

    Article  CAS  PubMed  Google Scholar 

  27. Fisher ER, Osborne CK, Mcguire WL, Redmond C, Sc D, Knight WA, et al. Correlation of primary breast cancer histopathology and estrogen receptor content. Breast Cancer Res Treat. 1981;1:37–41.

    Article  CAS  PubMed  Google Scholar 

  28. Huang B, Omoto Y, Iwase H, Yamashita H, Toyama T, Charles R. Differential expression of estrogen receptor α, β1, and β2 in lobular and ductal breast cancer. Proc Natl Acad Sci. 2013;111:2–7.

    Article  CAS  Google Scholar 

  29. Zhou Z, Qiao JX, Shetty A, Wu G, Huang Y, Davidson NE, et al. Regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. Cell Mol Life Sci. 2014;71(8):1549.

    Article  CAS  PubMed  Google Scholar 

  30. Voudouri K, Berdiaki A, Tzardi M, Tzanakakis GN, Nikitovic D. Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease. Anal Cell Pathol. 2015;2015:1–10.

    Article  CAS  Google Scholar 

  31. Wei W, Chen Z, Zhang K, Yang X, Wu Y, Chen X, et al. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor- negative breast cancer cells in vitro and in vivo. Cell Death Dis. 2014;5(132):e1428–e1428.

    Article  CAS  Google Scholar 

  32. Manuscript A. NIH Public Access. 2013;318(16):1–14.

    Google Scholar 

  33. Okoh V, Deoraj A, Roy D. Biochimica et Biophysica Acta Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. BBA Rev Cancer. 2011;1815(1):115–33.

    CAS  Google Scholar 

  34. Puhalla S, Bhattacharya S, Davidson NE. Hormonal therapy in breast cancer: a model disease for the personalization of cancer care. Mol Oncol. 2012;6:222–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller WR. Biological rationale for endocrine therapy in breast cancer. Best Pract Res Clin Endocrinol Metab. 2004;18(1):1–32.

    Article  CAS  PubMed  Google Scholar 

  36. Manuscript A. NIH Public Access. 2011;280(40):34210–34217.

    Google Scholar 

  37. Ndm ON, Borges S, Desta Z, Li L, Skaar TC, Ward BA, et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther. 2006;80(1):61–74.

    Article  CAS  Google Scholar 

  38. Manuscript A, Inhibitors A, Cancer B. NIH Public Access. 2012;125(410):13–22.

    Google Scholar 

  39. Brueggemeier RW, Hackett JC, Diaz-cruz ES. Aromatase inhibitors in the treatment of breast cancer. Endocr Rev. 2005;26(3):331–45.

    Article  CAS  PubMed  Google Scholar 

  40. Spring L, Bardia A, Modi S, Hospital G, Kettering S. HHS Public Access. 2017;21(113):65–74.

    Google Scholar 

  41. Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor – positive , HER2 – negative breast cancer. Breast Cancer. 2017;(0123456789).

    Google Scholar 

  42. Marsden R. AKT antagonist AZD5363 influences estrogen receptor function in endocrine resistant breast cancer and synergises with fulvestrant (ICI182780). Mol. Cancer Ther. 2015;44(0):2035–2048.

    Google Scholar 

  43. Guiochon-Mantel A, Milgrom E. Role of Progestins and progesterone receptors in breast cancer biology. Endocrinology of breast cancer. 11:245–259.

    Google Scholar 

  44. Cui X, Schiff R, Arpino G, Osborne CK, Lee AV. Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol. 2018;23(30):7721–35.

    Article  CAS  Google Scholar 

  45. Abderrahman B, Jordan VC. Steroid receptors in breast cancer. 5th ed. The breast. Comprehensive management of benign and malignant diseases. Elsevier Inc. 2017;2:p. 272–81.e2.

    Google Scholar 

  46. Kariagina A, Aupperlee MD, Haslam SZ. NIH Public Access 2010;18(1):11–33.

    Google Scholar 

  47. Tung L, Melville MY, Hovland AR, Takimoto GS, Sartorius CA, Horwitz KB. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol. 2014;8(10):1347–60.

    Google Scholar 

  48. Aupperlee M, Kariagina A, Osuch J, Haslam SZ. Progestins and breast cancer. Breast Dis. 2006;24:37–57.

    Article  Google Scholar 

  49. Knutson TP, Lange CA. Tracking progesterone receptor-mediated actions in breast cancer. Pharmacol Ther. 2014;142(1):114–25.

    Article  CAS  PubMed  Google Scholar 

  50. Mcdonnell DP. Unraveling the human progesterone receptor signal transduction pathway insights into antiprogestin action. Trends Endocrinol Metab. 1995;6(4):133–8.

    Article  CAS  PubMed  Google Scholar 

  51. Obr AE, Edwards DP. Molecular and cellular endocrinology the biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol. 2012;357(1–2):4–17.

    Article  CAS  PubMed  Google Scholar 

  52. Kolanska K. Progesterone receptor modulators: current applications and perspectives 2019;2:622–627.

    Google Scholar 

  53. Chavez-macgregor M, Brown P. HHS Public Access. 2015;15(13).

    Google Scholar 

  54. Manuscript A, Onlinefirst P. Downloaded from clincancerres.aacrjournals.org on January 12, 2015. © 2014 American Association for Cancer Research. 2014.

  55. Denkert C, Liedtke C, Tutt A, Von Minckwitz G. Breast cancer 3 molecular alterations in triple-negative breast cancer. Lancet. 2016;6736(16):1–13.

    Google Scholar 

  56. Berrada N, Delaloge S, Andre F. Treatment of triple-negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann Oncol. 2010;21(Suppl 7):30–5.

    Article  Google Scholar 

  57. Cancer B. HHS Public Access. 2018;7(1):1–12.

    Google Scholar 

  58. Omarini C. Neoadjuvant treatments in triple-negative breast cancer patients: where we are now and where we are going. Cancer Manag Res. 2018;10:91–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ezzat AA, Ibrahim EM, Ajarim DS, Rahal MM, Raja MA, Tulbah AM, et al. Phase II study of neoadjuvant paclitaxel and cisplatin for operable and locally advanced breast cancer: analysis of 126 patients. Br J Cancer. 2004;90(5):968–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goodin S. Novel cytotoxic agents: epothilones. Am J Health Syst Pharm. 2008;65(10 Suppl 3):10–5.

    Article  CAS  Google Scholar 

  61. Kubista E, Verrill M, Ciruelos E, Steger GG, Manikhas G, Xu L-A, et al. Phase II genomics study of ixabepilone as neoadjuvant treatment for breast cancer. J Clin Oncol. 2008;27(4):526–34.

    PubMed  Google Scholar 

  62. Harbeck N, Gottschalk N, Nitz U, Liedtke C, Gluz O, Pusztai L. Triple-negative breast cancer – current status and future directions. Ann Oncol. 2009;20(12):1913–27.

    Article  PubMed  Google Scholar 

  63. Sawka CA, Pritchard KI, Narod SA, Lickley LA, Kahn HK, Rawlinson E, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15):4429–34.

    Article  PubMed  Google Scholar 

  64. Cheang M, Chia SK, Tu D, Jiang S, Shepherd LE, Pritchard KI, Nielsen TO. Anthracyclines in basal breast cancer: the NCIC-CTG trial MA5 comparing adjuvant CMF to CEF. J Clin Oncol. 2009;27(15S):Abstract 519.

    Google Scholar 

  65. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. 2005;434(7035):236–9.

    Google Scholar 

  66. Slovin SF, Wang X, Hullings M, Arauz G, Bartido S, Lewis JS, Schöder H, Zanzonico P, Scher HI, Riviere I. Chimeric antigen receptor (CAR+) modified T cells targeting prostrate – specific antigen (PSMA) in patients (pts) with castrate metastatic prostrate cancer (CMPC). J Clin Oncol. 31:917–921.

    Google Scholar 

  67. Lane HA, Fumagalli S, Ruetz S, Beuvink I, Zilbermann F, O’Reilly T, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell. 2005;120(6):747–59.

    Article  PubMed  CAS  Google Scholar 

  68. Tanei T, Choi DS, Rodriguez AA, Liang DH, Dobrolecki L, Ghosh M, et al. Antitumor activity of Cetuximab in combination with Ixabepilone on triple negative breast cancer stem cells. Breast Cancer Res [Internet]. 2016;18(1):1–9. Available from: https://doi.org/10.1186/s13058-015-0662-4.

  69. Cancer B, Service M, Nazionale I. Trople-negative breast cancer: an unmet medical need. Oncologist. 2011;16(suppl 1):1–11.

    Google Scholar 

  70. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Fuqua SAW, Savage MI, et al. HHS public access. Clin Cancer Res. 2016;21(7):1688–98.

    Article  CAS  Google Scholar 

  71. Jotte R. IMpower 131. 2018;(18):10–3.

    Google Scholar 

  72. Hernando A, Kelly C, Morris P, Bulger K, Gullo G, Egan K, et al. Abstract OT3-06-05: a phase Ib/II trial of coPANlisib in combination with tratuzumab in pretreated recurrent or metastatic HER2-positive breast cancer “PantHER.”. Cancer Res. 2018;78(4 Supplement):OT3-06-05-OT3-06–05.

    Google Scholar 

  73. Gianni L, Partesotti G, Generali D, Montemurro F, Musolino A, Bisagni G, et al. Abstract OT1-03-03: phase II, open label, randomized, biomarker study of immune-mediated mechanism of action of neoadjuvant subcutaneous trastuzumab in patients with operable or locally advanced/Inflammatory HER2-positive breast cancer. ImmunHER trial on. Cancer Res. 2018;78(4 Supplement):OT1-03-03-OT1-03–03.

    Google Scholar 

  74. Alba E, Montemurro F, Hortobagyi G, O’Shaughnessy J, Im S-A, Dieras V, et al. Abstract OT3-05-06: EarLEE-2: a phase 3 study of ribociclib + endocrine therapy (ET) for adjuvant treatment of patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–), intermediate-risk, early breast cancer. Cancer Res. 2018;78(4 Supplement):OT3-05-06-OT3-05–6.

    Google Scholar 

  75. Bernardo A, Malorni L, Criscitiello C, Martignetti A, Boni L, Moretti E, et al. Palbociclib as single agent or in combination with the endocrine therapy received before disease progression for estrogen receptor-positive, HER2-negative metastatic breast cancer: TREnd trial. Ann Oncol. 2018;29(8):1748–54.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Benito S, Galluzzi L, Escudero M, Berraondo P, Rojo F, de la Cruz L, et al. Abstract OT1-01-02: a multicenter phase II trial to evaluate the efficacy and safety of pembrolizumab and gemcitabine in patients with HER2-negative advanced breast cancer: GEICAM/2015-04 PANGEA-Breast. Cancer Res. 2018;78(4 Supplement):OT1-01-02-OT1-01–2.

    Google Scholar 

  77. Mackey JR, Eiermann W, Fresco R, Fung H, Carrez S, Lopez C, et al. Abstract OT1-05-03: TRIO030: a presurgical tissue-acquisition study to evaluate molecular alterations in human breast cancer tissue following short-term exposure to the androgen receptor antagonist darolutamide. Cancer Res [Internet]. 2018;78(4 Supplement):OT1-05-03 LP-OT1-05–03. Available from: http://cancerres.aacrjournals.org/content/78/4_Supplement/OT1-05-03.abstract.

  78. Liguori M, Lanari C, Gass H, Rojas P, Elia A, Martinez Vazquez P, et al. Abstract OT1-04-02: Mifepristone treatment for breast cancer patients expressing levels of progesterone receptor isoform A (PRA) higher than those of isoform B (PRB). Cancer Res [Internet]. 2018;78(4 Supplement):OT1-04-02 LP-OT1-04–02. Available from: http://cancerres.aacrjournals.org/content/78/4_Supplement/OT1-04-02.abstract.

  79. Pitts T, Tentler J, Elias A, Miller K, Borges V, Gao D, et al. Abstract PD3-16: clinical safety and efficacy of the aurora and angiogenic kinase inhibitor ENMD-2076 in previously treated, locally advanced or metastatic triple-negative breast cancer. Cancer Res 2018;78(4 Supplement):PD3-16-PD3-16.

    Google Scholar 

  80. Reuben J, Liu D, Scoggins M, Willey J, Valero V, Dryden M, et al. Abstract OT1-02-01: a phase II study of anti-PD-1 (MK-3475) therapy in patients with metastatic inflammatory breast cancer (MIBC) or non-IBC triple negative breast cancer (non-IBC TNBC) who have achieved clinical response or stable disease to prior chemot. Cancer Res. 2018;78(4 Supplement):OT1-02-01-OT1-02–01.

    Google Scholar 

  81. Blackwell K, Traina T, Kim S-B, Tan T, Im Y-H, Dent R, et al. Abstract OT3-04-02: the DORA trial: a non-comparator randomised phase II multi-center maintenance study of olaparib alone or olaparib in combination with durvalumab in platinum treated advanced triple negative breast cancer (TNBC). Cancer Res. 2018;78(4 Supplement):OT3-04-02-OT3-04–02.

    Google Scholar 

  82. Reeder-Hayes KE, Carey LA, Sikov WM. Clinical trials in triple negative breast cancer. Breast Dis. 2010;32(1–2):123–36.

    PubMed  Google Scholar 

  83. Gao ZG, Tian L, Hu J, Park IS, Batist G. Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles. J Control Release [Internet]. 2011;152(1):84–9.

    Article  CAS  Google Scholar 

  84. Yin Q, Shen J, Chen L, Zhang Z, Gu W, Li Y. Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly(β-amino esters). Biomaterials [Internet]. 2012;33(27):6495–506.

    Article  CAS  Google Scholar 

  85. Blanco E, Sangai T, Hsiao A, Ferrati S, Bai L, Liu X, et al. Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment. Cancer Lett [Internet]. 2013;334(2):245–52.

    Article  CAS  Google Scholar 

  86. Kulhari H, Pooja D, Shrivastava S, Kuncha M, Naidu VGM, Bansal V, et al. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci Rep [Internet]. 2016;6:1–13.

    Article  CAS  Google Scholar 

  87. Wani MC, Carnahan MA, Oberlies NH, Morgan MT, Grinstaff MW, Kroll DJ, et al. Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res. 2006;66(24):11913–21.

    Article  PubMed  CAS  Google Scholar 

  88. Desai AM, Baker JR, Thomas TP, Patri AK, Peters JL, Kukowska-Latallo J, et al. HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem. 2006;17(5):1109–15.

    Article  PubMed  CAS  Google Scholar 

  89. O’Brien MER, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–9.

    Article  PubMed  Google Scholar 

  90. Belt R, Azarnia N, Winer E, Navari R, Rovira D, Harris L, et al. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer. 2002;94(1):25–36.

    Article  PubMed  CAS  Google Scholar 

  91. Bondarenko IN, Tjulandin SA, Oliynychenko GP, Balashova OI, Yuan Z, Xiu L, et al. Pegylated liposomal doxorubicin plus docetaxel significantly improves time to progression without additive cardiotoxicity compared with docetaxel monotherapy in patients with advanced breast cancer previously treated with neoadjuvant-adjuvant anthracyclin. J Clin Oncol. 2009;27(27):4522–9.

    Article  PubMed  CAS  Google Scholar 

  92. Yang L, Cao Z, Sajja HK, Mao H, Wang L, Geng H, et al. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol. 2008;4(4):439–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jin S, Lal R, Lee JH, Karin M, Brammer K, Zhang W, et al. Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett. 2010;10(12):5088–92.

    Article  PubMed  CAS  Google Scholar 

  94. Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J, et al. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano. 2011;5(5):3679–92.

    Article  CAS  PubMed  Google Scholar 

  95. Yuan H, Fales AM, Vo-Dinh T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc. 2012;134(28):11358–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bae KH, Lee K, Kim C, Park TG. Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials [Internet] 2011;32(1):176–184. Available from: https://doi.org/10.1016/j.biomaterials.2010.09.039.

    Article  CAS  PubMed  Google Scholar 

  97. Liu X, Srinivasan S, Alexander JF, Chiappini C, Ferrari M, Godin B, et al. Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater. 2012;22(20):4225–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Fedoryshin LL, et al. Near-infrared triggered anti-cancer drug release from upconverting nanoparticles. ACS Appl Mater Interfaces. 2014;6(16):13600–6.

    Article  CAS  PubMed  Google Scholar 

  99. Gao H, Cao S, Chen C, Cao S, Yang Z, Pang Z, et al. Incorporation of lapatinib into lipoprotein-like nanoparticles with enhanced water solubility and anti-tumor effect in breast cancer. Nanomedicine. 2013;8(9):1429–42.

    Article  CAS  PubMed  Google Scholar 

  100. Shi P, Aluri S, Lin YA, Shah M, Edman M, Dhandhukia J, et al. Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo. J Control Release [Internet]. 2013;171(3):330–338. Available from: https://doi.org/10.1016/j.jconrel.2013.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Montero AJ, Adams B, Diaz-Montero CM, Glück S. Nab-paclitaxel in the treatment of metastatic breast cancer: a comprehensive review. Expert Rev Clin Pharmacol. 2011;4(3):329–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ratnesh Jain or Prajakta Dandekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandit, A., Khare, L., Devarajan, P.V., Jain, R., Dandekar, P. (2019). Breast Cancer Receptors and Targeting Strategies. In: Devarajan, P., Dandekar, P., D'Souza, A. (eds) Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis. AAPS Advances in the Pharmaceutical Sciences Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-29168-6_3

Download citation

Publish with us

Policies and ethics