Skip to main content

Protocols for Cellular Evaluation of Targeted Drug Delivery Systems for Cancer and Infectious Diseases

  • Chapter
  • First Online:
Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis

Abstract

The most critical stage in evaluation of a novel drug or its delivery system is assessment of its safety and efficacy. Traditionally, in vivo animal models were used for this assessment. However, due to growing ethical concerns in animal usage, these in vivo animal models have largely been replaced by cell-based assays. Cell-based assays offer several advantages which have been described in this section. This chapter describes in detail the protocols along with critical parameters for various cell-based assays which can be used for evaluation of targeted drug delivery systems for cancer and infectious diseases.

Aakruti Kaikini and Vaibhavi Peshattiwar have equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3H-T:

3H-labeled thymidine

ATCC:

American Type Culture Collection

bFGF:

Basic fibroblast growth factor

BrdU:

5-Bromo-2′-deoxyuridine

CAM:

Chick embryo chorioallantoic membrane

cfu:

Colony-forming units

CLSI:

The Clinical and Laboratory Standards Institute

DMSO:

Dimethyl sulfoxide

DTT:

Dithiothreitol

EBM:

Endothelial basal media

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

(Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid)

ESCMID:

European Society of Clinical Microbiology and Infectious Diseases

FITC:

Fluorescein isothiocyanate

FRET:

Forster resonance energy transfer

HPLC:

High performance liquid chromatography

HUVECs:

Human umbilical vein endothelial cells

LC-MS:

Liquid chromatography-mass spectrometry

MHB:

Mueller–Hinton broth

MIC:

Minimum inhibitory concentration

MTT:

(3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide)

NDDS:

Novel drug delivery system

PAE:

Post antibiotic effect

PI:

Propidium iodide

UV:

Ultraviolet

VEGF:

Vascular endothelial growth factor

References

  1. Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239–49.

    Article  CAS  Google Scholar 

  2. Goldberg AM. Animals and alternatives: societal expectations and scientific need. Altern Lab Anim. 2004;32(6):545–51.

    Article  CAS  Google Scholar 

  3. Feng Y, Mitchison TJ, Bender A, Young DW, Tallarico JA. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat Rev Drug Discov. 2009;8(7):567–78.

    Article  CAS  Google Scholar 

  4. Clemons PA. Complex phenotypic assays in high-throughput screening. Curr Opin Chem Biol. 2004;8(3):334–8.

    Article  CAS  Google Scholar 

  5. van Meerloo JKG, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45.

    Article  Google Scholar 

  6. Romar GA, Kupper TS, Divito SJ. Research techniques made simple: techniques to assess cell proliferation. J Invest Dermatol. 2016;136(1):e1–7.

    Article  CAS  Google Scholar 

  7. Terry NH, White RA. Flow cytometry after bromodeoxyuridine labeling to measure S and G2+M phase durations plus doubling times in vitro and in vivo. Nat Protoc. 2006;1(2):859–69.

    Article  CAS  Google Scholar 

  8. Nguyen M, Shing Y, Folkman J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res. 1994;47(1):31–40.

    Article  CAS  Google Scholar 

  9. Hlushchuk R, Bronnimann D, Correa Shokiche C, Schaad L, Triet R, Jazwinska A, et al. Zebrafish caudal fin angiogenesis assay-advanced quantitative assessment including 3-way correlative microscopy. PLoS One. 2016;11(3):e0149281.

    Article  Google Scholar 

  10. Cao Z, Zheng L, Zhao J, Zhuang Q, Hong Z, Lin W. Anti-angiogenic effect of Livistona chinensis seed extract in vitro and in vivo. Oncol Lett. 2017;14(6):7565–70.

    PubMed  PubMed Central  Google Scholar 

  11. Nitiss JL, Soans E, Rogojina A, Seth A, Mishina M. Topoisomerase assays. Curr Protoc Pharmacol. 2012; Chapter 3:Unit 3; https://doi.org/10.1002/0471141755.ph0303s57.

  12. Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol. 2004;281:301–11.

    CAS  PubMed  Google Scholar 

  13. Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp. 2011;(50) https://doi.org/10.3791/2597.

  14. Rehm M, Parsons MJ, Bouchier-Hayes L. Measuring caspase activity by Forster resonance energy transfer. Cold Spring Harb Protoc. 2015;2015(1):pdb prot082560.

    Article  Google Scholar 

  15. Muller C, Schubiger PA, Schibli R. In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radiofolate tracer. Eur J Nucl Med Mol Imaging. 2006;33(10):1162–70.

    Article  Google Scholar 

  16. EUCAST. European Committee for Antimicrobial Susceptibility Testing (EUCAST). Clin Microbiol Infect. 2003;9(8):9–15.

    Google Scholar 

  17. Wayne P, CLSI. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. 29th ed. Wayne: Clinical and Laboratory Standards Institute; 2019.

    Google Scholar 

  18. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–75.

    Article  CAS  Google Scholar 

  19. Forry SP, Madonna MC, Lopez-Perez D, Lin NJ, Pasco MD. Automation of antimicrobial activity screening. AMB Express. 2016;6(1):20.

    Article  Google Scholar 

  20. Zhao DH, Yu Y, Zhou YF, Shi W, Deng H, Liu YH. Postantibiotic effect and postantibiotic sub-minimum inhibitory concentration effect of valnemulin against Staphylococcus aureus isolates from swine and chickens. Lett Appl Microbiol. 2014;58(2):150–5.

    Article  CAS  Google Scholar 

  21. Motyl M, Dorso K, Barrett J, Giacobbe R. Basic microbiological techniques used in antibacterial drug discovery. Curr Protoc Pharmacol. 2006; Chapter 13:Unit13A 3; https://doi.org/10.1002/0471141755.ph13a03s31.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prajakta Dandekar or Sadhana Sathaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaikini, A., Peshattiwar, V., Devarajan, P.V., Dandekar, P., Sathaye, S. (2019). Protocols for Cellular Evaluation of Targeted Drug Delivery Systems for Cancer and Infectious Diseases. In: Devarajan, P., Dandekar, P., D'Souza, A. (eds) Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis. AAPS Advances in the Pharmaceutical Sciences Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-29168-6_18

Download citation

Publish with us

Policies and ethics