Skip to main content

Role of Biofilms in Bioprocesses: A Framework for Multidimensional IBM Modelling of Heterogeneous Biofilms

  • Chapter
  • First Online:
  • 563 Accesses

Abstract

During the past few decades, biofilm formation by a variety of microbial strains has attracted much attention, mainly in the medical and industrial settings due to their high resistance to antibiotics. However, environmental scientists and biochemical engineers have realized the importance of biofilm growth dynamics and their biocatalytic activity. For instance, the ability to forecast and control microbial communities has led to enhance biogas production and a better characterization of biofilm importance in wastewater treatment systems. Thus, understanding the fundamental processes contributing to biofilm growth is useful to anyone involved with natural or industrial settings where biofilms may play a significant role in determining variables such as bulk water quality, toxic compound biodegradation or product quality. Investigation of individual microcolonies within a biofilm using powerful microscopic tools has fueled the creation of biofilm models that reproduce biofilm growth dynamics and interactions. Mathematical frameworks that describe heterogeneous bacterial biofilms formation have greatly contributed to our understanding of physiochemical and biological principles of biofilm spreading dynamics. A clear understanding of heterogeneities at the local scale may be vital to solving the riddle of the complex nature of microbial communities, which is crucial to improve the performance, robustness and stability of biofilm -associated bioprocess.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alpkvist, E., & Klapper, I. (2007). A multidimensional multispecies continuum model for heterogeneous biofilm development. Bulletin of Mathematical Biology, 69(2), 765–789.

    Article  Google Scholar 

  • Andreottola, G., Foladori, P., Ragazzi, M., & Villa, R. (2002). Dairy wastewater treatment in a moving bed biofilm reactor. Water Science and Technology, 45(12), 321–328.

    Article  CAS  Google Scholar 

  • Ardre, M., Henry, H., Douarche, C., & Plapp, M. (2015). An individual-based model for biofilm formation at liquid surfaces. Physical Biology, 12(6), 066015.

    Article  Google Scholar 

  • Barraud, N., Hassett, D. J., Hwang, S. H., Rice, S. A., Kjelleberg, S., & Webb, J. S. (2006). Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. Journal of Bacteriology, 188(21), 7344–7353.

    Article  CAS  Google Scholar 

  • Beerman, H., Bonsing, B. A., van de Vijver, M. J., Hermans, J., Kluin, P. M., Caspers, R. J., et al. (1991). DNA ploidy of primary breast cancer and local recurrence after breast-conserving therapy. British Journal of Cancer, 64(1), 139–143.

    Article  CAS  Google Scholar 

  • Bengelsdorf, F., Langer, S., Kern, M., Zak, M., & Kazda, M. (2014). Additional biofilms improve the anaerobic digestion of food leftovers.

    Google Scholar 

  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.

    Article  CAS  Google Scholar 

  • Davenport, E. K., Call, D. R., & Beyenal, H. (2014). Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms. Antimicrobial Agents and Chemotherapy, 58(8), 4755–4761.

    Article  Google Scholar 

  • Duddu, R., Chopp, D. L., & Moran, B. (2009). A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnology and Bioengineering, 103(1), 92–104.

    Article  CAS  Google Scholar 

  • Edgerton, M., & McCall, A. (2017). Real-time approach to flow cell imaging of candida albicans biofilm development. Journal of Fungi, 3(1).

    Google Scholar 

  • Emerenini, B. O., Hense, B. A., Kuttler, C., & Eberl, H. J. (2015). A mathematical model of quorum sensing induced biofilm detachment. PLoS One, 10(7), e0132385.

    Article  Google Scholar 

  • Fagerlind, M. G., Webb, J. S., Barraud, N., McDougald, D., Jansson, A., Nilsson, P., et al. (2012). Dynamic modelling of cell death during biofilm development. Journal of Theoretical Biology, 295, 23–36.

    Article  Google Scholar 

  • Fish, K. E., & Boxall, J. B. (2018). Biofilm microbiome (Re) growth dynamics in drinking water distribution systems are impacted by chlorine concentration. Frontiers in Microbiology, 9, 2519.

    Article  Google Scholar 

  • Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563–575.

    Google Scholar 

  • Frederick, M. R., Kuttler, C., Hense, B. A., & Eberl, H. J. (2011). A mathematical model of quorum sensing regulated EPS production in biofilm communities. Theoretical Biology and Medical Modelling, 8, 8.

    Article  Google Scholar 

  • Goswami, R., Chattopadhyay, P., Shome, A., Banerjee, S. N., Chakraborty, A. K., Mathew, A. K., et al. (2016). An overview of physico-chemical mechanisms of biogas production by microbial communities: A step towards sustainable waste management. 3 Biotech, 6(1), 72.

    Google Scholar 

  • Hall, C. W., & Mah, T. F. (2017). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 41(3), 276–301.

    Article  CAS  Google Scholar 

  • Jayathilake, P. G., Gupta, P., Li, B., Madsen, C., Oyebamiji, O., Gonzalez-Cabaleiro, R., et al. (2017). A mechanistic Individual-based Model of microbial communities. PLoS ONE, 12(8), e0181965.

    Article  Google Scholar 

  • Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? FEMS Microbiology Letters, 236(2), 163–173.

    Article  CAS  Google Scholar 

  • Lamotta, E. J. (1976). Internal diffusion and reaction in biological films. Environmental Science and Technology, 10(8), 765–769.

    Article  CAS  Google Scholar 

  • Langer, S., Schropp, D., Bengelsdorf, F. R., Othman, M., & Kazda, M. (2014). Dynamics of biofilm formation during anaerobic digestion of organic waste. Anaerobe, 29, 44–51.

    Article  CAS  Google Scholar 

  • Li, C., Zhang, Y., & Yehuda C. (2015). Individual based modeling of Pseudomonas aeruginosa biofilm with three detachment mechanisms. RSC Advances.

    Google Scholar 

  • Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum, 3(3).

    Google Scholar 

  • Liu, Y., Zhu, Y., Jia, H., Yong, X., Zhang, L., Zhou, J., et al. (2017). Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw. Bioresource Technology, 244(Pt 1), 445–451.

    Article  CAS  Google Scholar 

  • Machineni, L., Rajapantul, A., Nandamuri, V., & Pawar, P. D. (2017). Influence of nutrient availability and quorum sensing on the formation of metabolically inactive microcolonies within structurally heterogeneous bacterial biofilms: An individual-based 3D cellular automata model. Bulletin of Mathematical Biology, 79(3), 594–618.

    Google Scholar 

  • Machineni, L., Ch. Tejesh Reddy, Nandamuri, V., & Pawar, P. D. (2018). A 3D individual‐based model to investigate the spatially heterogeneous response of bacterial biofilms to antimicrobial agents. Mathematical Methods in the Applied Sciences, 41(18).

    Google Scholar 

  • Maksimova, Y. G. (2014). Microbial biofilms in biotechnological processes. Applied Biochemistry and Microbiology, 50(8), 750–760.

    Article  CAS  Google Scholar 

  • Martens, E., & Demain, A. L. (2017). The antibiotic resistance crisis, with a focus on the United States. The Journal of Antibiotics (Tokyo), 70(5), 520–526.

    Article  CAS  Google Scholar 

  • Miranda, A. F., Ramkumar, N., Andriotis, C., Holtkemeier, T., Yasmin, A., Rochfort, S., et al. (2017). Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnology for Biofuels, 10, 120.

    Article  Google Scholar 

  • Muñoz, A. J., Espínola, F., Moya, M., & Ruiz, E. (2015). Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 isolated from a wastewater treatment plant: Kinetics and mechanisms studies. BioMed Research International, 2015, 12.

    Google Scholar 

  • Najafpour, G., & Ebrahimi, A. (2016). Biological treatment processes: Suspended growth vs. attached growth.

    Google Scholar 

  • Picioreanu, C., Kreft, J. U., & Van Loosdrecht, M. C. (2004). Particle-based multidimensional multispecies biofilm model. Applied and Environment Microbiology, 70(5), 3024–3040.

    Article  CAS  Google Scholar 

  • Postgate, J. R., & Hunter, J. R. (1962). The survival of starved bacteria. Journal of General Microbiology, 29, 233–263.

    Article  CAS  Google Scholar 

  • Qureshi, N., Annous, B. A., Ezeji, T. C., Karcher, P., & Maddox, I. S. (2005). Biofilm reactors for industrial bioconversion processes: Employing potential of enhanced reaction rates. Microbial Cell Factories, 4, 24.

    Article  Google Scholar 

  • Sauer, K. (2003). The genomics and proteomics of biofilm formation. Genome Biology, 4(6), 219.

    Article  Google Scholar 

  • Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W., & Davies, D. G. (2002). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. Journal of Bacteriology, 184(4), 1140–1154.

    Article  CAS  Google Scholar 

  • Schnurer, A. (2016). Biogas production: Microbiology and technology. Advances in Biochemical Engineering/Biotechnology, 156, 195–234.

    PubMed  Google Scholar 

  • Shih, P. C., & Huang, C. T. (2002). Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. Journal of Antimicrobial Chemotherapy, 49(2), 309–314.

    Article  CAS  Google Scholar 

  • Stoodley, P., Lewandowski, Z., Boyle, J. D., & Lappin-Scott, H. M. (1999). Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology. Biotechnology and Bioengineering, 65(1), 83–92.

    Article  CAS  Google Scholar 

  • Stoodley, P., Cargo, R., Rupp, C. J., Wilson, S., & Klapper, I. (2002). Biofilm material properties as related to shear-induced deformation and detachment phenomena. Journal of Industrial Microbiology and Biotechnology, 29(6), 361–367.

    Article  CAS  Google Scholar 

  • Tang, K., Ooi, G. T. H., Litty, K., Sundmark, K., Kaarsholm, K. M. S., Sund, C., et al. (2017). Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor (MBBR) with intermittent feeding. Bioresource Technology, 236, 77–86.

    Article  CAS  Google Scholar 

  • Teitzel, G. M., & Parsek, M. R. (2003). Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environment Microbiology, 69(4), 2313–2320.

    Article  CAS  Google Scholar 

  • Tsuneda, S., Aikawa, H., Hayashi, H., Yuasa, A., & Hirata, A. (2003). Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiology Letters, 223(2), 287–292.

    Article  CAS  Google Scholar 

  • Valero, D., Rico, C., Canto-Canché, B., Domínguez-Maldonado, J. A., Tapia-Tussell, R., Cortes-Velazquez, A., Alzate-Gaviria, L. (2018). Enhancing biochemical methane potential and enrichment of specific electroactive communities from nixtamalization wastewater using granular activated carbon as a conductive material. Energies, 11.

    Google Scholar 

  • Wanner O, Eberl, H., Morgenroth, E., Noguera, D., Picioreanu, C., Rittmann, B. E., et al. (2006). Mathematical modeling of biofilms, IWA Scientific and Technical Report No.18, IWA Publishing.

    Google Scholar 

  • Wang, L., Fan, D., Chen, W., & Terentjev, E. M. (2015). Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Scientific Reports, 5, 15159.

    Article  CAS  Google Scholar 

  • Williamson, K., & McCarty, P. L. (1976). A model of substrate utilization by bacterial films. Journal of Water Pollution Control Federation, 48(1), 9–24.

    CAS  Google Scholar 

  • Zainol, N., Salihon, J., & Abdul-Rahman, R. (2009). Biogas production from waste using biofilm reactor: factor analysis in two stages system.

    Google Scholar 

  • Zhang, X., Wang, X., Nie, K., Li, M., & Sun, Q. (2016). Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model. Physical Biology, 13(4), 046002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Machineni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Machineni, L., Pawar, P.D. (2019). Role of Biofilms in Bioprocesses: A Framework for Multidimensional IBM Modelling of Heterogeneous Biofilms. In: Pogaku, R. (eds) Horizons in Bioprocess Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-29069-6_6

Download citation

Publish with us

Policies and ethics