Skip to main content

Biotechnology for Environmentally Benign Gold Production

  • Chapter
  • First Online:
Book cover Horizons in Bioprocess Engineering

Abstract

Biotechnology relevant to gold exploration, mining, recovery, and waste disposal is illustrated with respect to microbiological aspects of gold mineralization, biooxidation of refractory sulfide ores and concentrates, cyanide-free gold dissolution, and biodegradation of cyanide containing effluents. Current industrial status of technological innovations in the bioreactor processing and heap bioleaching of refractory sulfide ores and concentrates are discussed. Biodetoxification and degradation of cyanides in waste tailings and waters are critically analyzed with examples from industrial practice. Prospects for direct biodissolution of gold are brought out. Recovery of gold from spent leach cyanide solutions and electronics wastes is examined. Bright future prospects for biotechnology in gold exploration, mining, extraction, and waste disposal are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M. D. (2016). Advances in gold ore processing-project development and operations (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Akcil, A. (2003). Destruction of cyanide in gold mill effluents, biological versus chemical treatments. Biotechnology Advances, 21, 501–511.

    Article  CAS  Google Scholar 

  • Akcil, A., & Mudder, T. (2003). Microbial destruction of cyanide wastes in gold mining: Process review. Biotechnology Letters, 25, 445–450.

    Article  CAS  Google Scholar 

  • Amankwah, R. K., Yen, W. T., & Ramsay, J. A. (2005). A two-stage bacterial ore treatment process for double refractory gold ore. Minerals Engineering, 18, 103–108.

    Article  CAS  Google Scholar 

  • Balakrishnan, M., Modak, J. M., Natarajan, K. A., & Gururaj Naik, J. S. (1994). Biological uptake of precious and base metals from gold-process cyanide effluents. Minerals & Met. Processing, 11, 197–202.

    Google Scholar 

  • Beckman, S., & Thompson, L. (2004). BioLix-an alternative to cyanide for the extraction of precious metals from ore. In Bac-min conference, Victoria (pp. 107–112).

    Google Scholar 

  • Bhakta, P., & Arthur, B. (2002). Heap bio-oxidation and gold recovery at Newmont mining: First-year results. JOM, 54, 31–34.

    Article  CAS  Google Scholar 

  • Boon, M., & Heijin, J. J. (1998). Gas-liquid mass transfer phenomenon in biooxidation experiments of sulfide minerals: A critical review of literature data. Hydrometallurgy, 48, 187–204.

    Article  CAS  Google Scholar 

  • Botz, M. M., Mudder, T. I., & Akcil, A. (2016). Cyanide treatment: Physical, chemical and biological processes. In M. D. Adams (Ed.), Advances in gold ore processing (Chap. 35, pp. 619–644). Amsterdam: Elsevier.

    Google Scholar 

  • Brierley, J. A. (2003). Response of microbial systems to thermal strees in biooxidation-heap pretreatment of refractory gold ores. Hydrometallurgy, 71, 13–19.

    Article  CAS  Google Scholar 

  • Brierley, C. L., & Brierley, J. A. (2013). Progress in bioleaching: part B: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 97, 7543–7552.

    Article  CAS  Google Scholar 

  • Brierley, J. A., & Kulpa, C. F. (1992). Microbial consortium treatment of refractory precious metal ores, USA, 5,127,942, 07 July 1992.

    Google Scholar 

  • Campbell, S. C., Olson, G. J., Clark, T. R., & McFeters, G. (2001). Biogenic production of cyanide and its application to gold recovery. Journal of Industrial Microbiology and Biotechnology, 26, 134–139.

    Article  CAS  Google Scholar 

  • Cui, J., & Zhang, L. (2008). Metallurgical recovery of metals from electronic waste—A review. Journal of Hazardous Materials, 158, 228–256.

    Article  CAS  Google Scholar 

  • Cyanide-free biocatalyzed leaching of gold and silver ore. www.yestech.com/tech/gold1.htm.

  • Dement’ev, V. E., & Vojloshnikov, G. I. (2011). Ingiredmet experience on gold biometallurgy. In G. Qiu, T. Jiang, Q. Qin, K. Liu, Y. Yang & H. Wang (Eds.), Proceedings of the 19th International Biohydrometallurgy Symposium, (pp. 818–820), Changsha, China.

    Google Scholar 

  • Gahan, C. S., Srichandan, H., Kim, D. J., & Akcil, A. (2012). Biohydrometallurgy and biomineral processing technology: A review on its past, present and future. Research Journal of Recent Science, 1, 85–99.

    CAS  Google Scholar 

  • Gericke, M. (2012) Review of the role of microbiology in the design and operation of heap bioleaching processes. Journal of South African Institute of Mining and Metallurgy, 112.

    Google Scholar 

  • Gericke, M., & Pinches, A. (2006). Microbial production of gold nanoparticles. Gold Bulletin, 39, 22–28.

    Article  CAS  Google Scholar 

  • Gericke, M., Neale, J. W., & van Staden, P. J. (2009). A Mintek perspective of the past 25 years in minerals bioleaching. Journal of the Southern African Institute of Mining and Metallurgy, 109, 567–585.

    CAS  Google Scholar 

  • Groudev, S. N., Spasova, I. I., & Ivanov, I. M. (1996). A combined chemical and biological heap leaching of an oxide gold-bearing ore. Minerals Engineering, 9, 707–713.

    Google Scholar 

  • Harvey, T. J., & Bath, M. (2007). The geobiotics geocoat technology-progress and challenges. In D. E. Rawlings & D. B. Johnson (Eds.), Biomining (pp. 97–112). Springer: Berlin.

    Chapter  Google Scholar 

  • Harvey, T. J., Merwe, W. V. D., & Afewu, K. (2002). The application of the GeoBiotics GEOCOAT ® biooxidation technology for the treatment of sphalerite at Kumba resources’ Rosh Pinah mine. Minerals Engineering, 15, 823–829.

    Article  CAS  Google Scholar 

  • Huddy, R. J., Kantor, R., Zyl, A. W. V., Hille, R. P. V., Banfield, J., & Harrison, S. T. L. (2015a). Analysis of the microbial community associated with a bioprocess system for remediation of thiocyanate and cyanide-laden mine water effluents. Advanced Material Research, 1130, 614–617.

    Google Scholar 

  • Huddy, R. J., Zyl, A. W. V., Van Hille, R. P., & Harrison, S. T. L. (2015b). Characterization of the complex microbial community associated with the ASTER thiocyanate biodegradation system. Minerals Engineering, 76, 65–71

    Google Scholar 

  • Hunter, R. M., Stewart, F. M., Darsow, T., Fogelsong, M. L., Mogk, D. W., Abbott, E. H., et al. (1998). New alternative to cyanidation: Biocatalyzed bisulfide leaching. Mineral Procesing and Extractive Metallurgy Review, 19, 183–197.

    Article  CAS  Google Scholar 

  • Kadlec, B. H., & Wallace, S. D. (2008). Treatment of wetlands, CRC Press.

    Google Scholar 

  • Kaksonen, A., Mudunuru, B. M., & Hack, R. (2014). The role of microorganisms in gold processing and recovery—A review. Hydrometallurgy, 142, 70–83.

    Article  CAS  Google Scholar 

  • Karthikeyan, O. P., Rajasekar, A., & Balasubramanian, R. (2015). Bio-oxidation and bio-cyanidation of refractory mineral ores for gold extraction: A review. Critical Reviews in Environmental Science and Technology, 45, 1611–1643.

    Article  CAS  Google Scholar 

  • Kashefi, K., Tor, J. M., Nevin, K. P., & Loveley, D. R. (2001). Reductive precipitation of gold by assimilatory Fe(III)—reducing bacteria and archaea. Applied and Environmental Microbiology, 67, 3275–3279.

    Article  CAS  Google Scholar 

  • Kenney, P. L., Zhen, S., Bunker, B. A., & Fein, J. B. (2012). An experimental study of Au removal from solution by non-metabolizing bacterial cells and their exudates. Geochimica et Cosmochimica Acta, 87, 51–60.

    Article  CAS  Google Scholar 

  • Khamar, Z., Kakhki, A. M., & Gharaie, M. H. M. (2015). Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture. International Biodeterioration and Biodegradation, 99, 123–128.

    Article  CAS  Google Scholar 

  • Kuyucak, N., & Akcil, A. (2013). Cyanide and removal options from effluents in gold mining and metallurgical processes. Minerals Engineering, 50–51, 13–29.

    Article  Google Scholar 

  • Liang, C. J., Li, J. Y., & Ma, C. J. (2014). Review on cyanogenic bacteria for gold recovery from e-waste. Advanced Materials Research, 878, 355–367.

    Article  Google Scholar 

  • Liu, Q., Yang, H., Tong, L., Jin, Z., & Sand, W. (2016a). Fungal degradation of elemental carbon in carbonaceous gold ore. Hydrometallurgy, 160, 90–97.

    Article  CAS  Google Scholar 

  • Liu, R., Li, J., & Ge, Z. (2016). Review on Chromobacterium violaceum for gold bioleaching from E. Waste. Procedia Environmental Sciences, 31, 947–953.

    Google Scholar 

  • Logan, T. C., Seal, T., & Brierley, J. A. (2007). Whole ore heap biooxidation of sulfidic gold-bearing ores. In D. E. Rawlings & D. B. Johnson (Eds.), Biomining (pp. 113–138). Berlin: Springer.

    Chapter  Google Scholar 

  • Makhotla, N., van Buuren, C., & Olivier, J. W. (2010). The aster process: Technology development through to piloting, demonstration and commercialization. www.biomin.co.za/pdf/2010aster.

  • Miller, P. C. (2000). Potential methods for reducing cyanide consumption for bacterial oxidation residues, Internal Document. BacTech Corp.

    Google Scholar 

  • Miller, P., & Brown, A. (2005). Bacterial oxidation of refractory gold concentrates. Advances in gold ore processing, 15, 371–402. Elsevier.

    Article  Google Scholar 

  • Miller, B. P., & Brown, A. R. G. (2014). Bacterial oxidation of refractory gold concentrates. In Adams, M. D. (Ed.), Gold ore processing, project development and operations, p. 359. Elsevier

    Google Scholar 

  • Mudder, T. I., Botz, M. M., & Smith, A. (2001). Chemistry and treatment of cyanidation wastes (pp. 239–281). London: Mining Journal Books Ltd.

    Google Scholar 

  • Natarajan, K. A. (1992). Bioprocessing for enhanced gold recovery. Mineral Processing and Extractive Metallurgy Review, 8, 143–153.

    Article  Google Scholar 

  • Natarajan, K. A. (1993). Biotechnology in gold processing. Bulletin of Materials Science, 16, 501–508.

    Article  CAS  Google Scholar 

  • Natarajan, K. A. (1998). Microbes, Minerals and Environment. (Bangalore): Geological Survey of India.

    Google Scholar 

  • Natarajan, K. A. (2018). Biotechnology for gold mining, extraction and waste control. In Biotechnology of metals: Principles, recovery methods and environmental concerns, pp 179–210. Amsterdam: Elsevier.

    Google Scholar 

  • Neale, J. W., Gericke, M., & Ramcharan, K. (2011). The application of bioleaching to base metal sulfides in southern Africa: Prospects and opportunities. In 6th Southern African Base Metals Conference South African Institute of Mining and Metallurgy.

    Google Scholar 

  • Niekerk J. V. (2012). Recent advances in the BIOX technology, Newsletter (from WEB).

    Google Scholar 

  • Olivier, J. W., & Jardine, J. G. (2014). Application of BIOX GIII- Principles during Runruno BIOX plant development, MINEX, MOXCOW, 7–9 Oct 2014.

    Google Scholar 

  • Olson, G. J., Brierley, J. A., & Brierley, C. L. (2003). Bioleaching review part B: Progress in bioleaching: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 63, 249–257.

    Article  CAS  Google Scholar 

  • Outotec Aster Process. http://www.ontotec.com/products/leaching-and-solution-purification/aster-process.

  • Rawlings, D. E. (1997). Biomining: Theory, microbes and industrial processes. Springer.

    Google Scholar 

  • Rea, M. A., Zammit, C. M., & Reith, F. (2016). Bacterial biofilms on gold grains-implications for geomicrobial transformations of gold. FEMS Microbiology Ecology, 92, 1–11.

    Article  Google Scholar 

  • Reith, F. (2002). Interactions of microorganisms with gold in regolith materials from a gold mine near mogo in south eastern New South Wales. In I. C. Roach (Ed.), Regolith and landscapes in Eastern Australia (pp. 107–110).

    Google Scholar 

  • Reith, F., Lengke, M. F., Falconer, D., Craw, D., Southam, G. (2007a). The geomicrobiology of gold. The ISME Journal, 1, 1–18

    Google Scholar 

  • Reith, F., Rogers, S. L., McPhail, K. C., & Brugger, J. (2007b). Potential for the utilization of microorganisms in gold processing. In World gold conference, Cairns, Australia.

    Google Scholar 

  • Reith, F., Brugger, J., Zammit, C. M., Nies, D. H., & Southam, G. (2013). Geobiological cycling of gold: From fundamental process understanding to exploration solutions. Minerals, 3, 367–394.

    Article  Google Scholar 

  • Roberto, F. F. (2017). Commercial biooxidation of refractory gold ores-Revisiting Newmont’s successful deployment at Carlin. Minerals Engineering, 106, 2–6.

    Article  CAS  Google Scholar 

  • Shin, D., Jeong, J., Lee, S., Pandey, B. D., & Lee, J. C. (2013). Evaluation of bioleaching factors on gold recovery from ore by cyanide-producing bacteria. Minerals Engineering, 48, 20–24.

    Article  CAS  Google Scholar 

  • Shuster, J., & Reith, F. (2018). Reflecting on gold geomicrobiology research: Thoughts and considerations for future endeavours. Minerals, 8(9), 1–12.

    Article  Google Scholar 

  • Steyn, B., & Benewoe, V. (2009) A practical example of recovery improvements in a bacterial oxidation plant. In World gold conference, 2009, South African Institute of Mining and Metallurgy.

    Google Scholar 

  • Thompson, L. C., & MacCulloch, J. R. F. (2004). Biological process for gold recovery. In Bac-Min Conference, Victoria.

    Google Scholar 

  • Van Aswegen, P. C., Niekerk, J. V., & Olivier, W. (2007). The BIOX™ process for the treatment of refractory gold concentrates. In D. E. Rawlings & D. B. Johnson (Eds.), Biomining. Berlin: Springer.

    Google Scholar 

  • Van Niekerk, J. (2009). Recent advances in BIOX technology. In Hydrometallurgy conference 2009. Southern African Institute of Mining and Metallurgy.

    Google Scholar 

  • Van Niekerk, J., Olivier, W., & Van Buuren, C. Complete refractory gold solutions, (from Web: c/users/DELL/Downloads/paper%20(#1).pdf)

    Google Scholar 

  • Veert, G., & Kroes, P. J. (1993). Development of the delft inclined plate (DIP) bioreactor. Minerals Engineering, 6(8–10), 991–999.

    Google Scholar 

  • Watling, H. R. (2006). The bioleaching of sulfide minerals with emphasis on copper sulfides—A review. Hydrometallurgy, 84, 81–108.

    Article  CAS  Google Scholar 

  • Whitlock, J. L., & Smith, G. R. (1989). Operation of Homestakes cyanide biodegradation wastewater system based on multi-variable trend analysis. In W. Y. Jackson (Ed.), Proceedings of the 8th international symposium on biohydrometallurgy (pp. 613–625), CANMET, Ottawa.

    Google Scholar 

  • www.biomin.co.za/aster/history.html

  • Yang, H., Liu, Q., Song, X., & Dong, J. (2013). Research status of carbonaceous matter in carbonaceous gold ores and bio-oxidation pretreatment. Transactions of Nonferrous Metals Society of China, 23, 3405–3411.

    Google Scholar 

  • Yen, W. T., Amankwah, R. K., & Choi, Y. (2009). Microbial pretreatement of double refractory ore. US 2009/0158893A1 [P] 2009-06-25.

    Google Scholar 

  • Zammit, C. M., Cook, N., Brugger, J., Ciobanu, C. L., & Reith, F. (2012). The future of biotechnology for gold exploration and processing. Minerals Engineering, 32, 45–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to the National Academy of Sciences, India (NASI) for Honorary Scientist Contingency grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Natarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Natarajan, K.A. (2019). Biotechnology for Environmentally Benign Gold Production. In: Pogaku, R. (eds) Horizons in Bioprocess Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-29069-6_14

Download citation

Publish with us

Policies and ethics