Skip to main content

Adaptive IIR Filters

  • Chapter
  • First Online:
  • 2393 Accesses

Abstract

Adaptive infinite impulse response (IIR) filters are those in which the zeros and poles of the filter can be adapted. For that benefit, the adaptive IIR filters usually have adaptive coefficients on the transfer function numerator and denominator. (There are adaptive filtering algorithms with fixed poles.) Adaptive IIR filters present some advantages as compared with the adaptive FIR filters, including reduced computational complexity. If both have the same number of coefficients, the frequency response of the IIR filter can approximate much better a desired characteristic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There are adaptive filtering algorithms with fixed poles.

  2. 2.

    The reader should note that this definition of the deterministic weighted least squares utilizes the a priori error with respect to the latest data pair d(k) and x(k), unlike the FIR RLS case.

  3. 3.

    By differentiating \(2{\mathbf{{g}}}_D(k)\) in (10.21) with respect to \({{\varvec{\theta }}(k)}\).

References

  1. P.S.R. Diniz, E.A.B. da Silva, S.L. Netto, Digital Signal Processing: System Analysis and Design, 2nd edn. (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  2. A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters (McGraw Hill, New York, 2005)

    Google Scholar 

  3. C.R. Johnson Jr., Adaptive IIR filtering: current results and open issues. IEEE Trans. Inf. Theory (IT) 30, 237–250 (1984)

    Google Scholar 

  4. L. Ljung, T. Söderström, Theory and Practice of Recursive Identification (MIT, Cambridge, 1983)

    Google Scholar 

  5. S.A. White, An adaptive recursive digital filter, in Proceedings of the 9th Asilomar Conference on Circuits, Systems, and Computers, Pacific Grove, CA (1975), pp. 21–25

    Google Scholar 

  6. S. Hovarth Jr., A new adaptive recursive LMS filter, in Proceedings of the Digital Signal Processing Conference, Florence, Italy (1980), pp. 21–26

    Google Scholar 

  7. T.C. Hsia, A simplified adaptive recursive filter design. Proc. IEEE 69, 1153–1155 (1981)

    Article  Google Scholar 

  8. R.A. David, A modified cascade structure for IIR adaptive algorithms, in Proceedings of the 15th Asilomar Conference on Circuits, Systems, and Computers, Pacific Grove, CA (1981), pp. 175–179

    Google Scholar 

  9. J.J. Shynk, Adaptive IIR filtering using parallel-form realization. IEEE Trans. Acoust. Speech Signal Process. 37, 519–533 (1989)

    Article  Google Scholar 

  10. D. Parikh, N. Ahmed, S.D. Stearns, An adaptive lattice algorithm for recursive filters. IEEE Trans. Acoust. Speech Signal Process. (ASSP) 28, 110–112 (1980)

    Article  Google Scholar 

  11. I.L. Ayala, On a new adaptive lattice algorithm for recursive filters. IEEE Trans. Acoust. Speech Signal Process. (ASSP) 30, 316–319 (1982)

    Article  MathSciNet  Google Scholar 

  12. J.J. Shynk, On lattice-form algorithms for adaptive IIR filtering, in Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, New York, NY (1988), pp. 1554–1557

    Google Scholar 

  13. J.A. Rodríguez-Fonollosa, E. Masgrau, Simplified gradient calculation in adaptive IIR lattice filters. IEEE Trans. Signal Process. 39, 1702–1705 (1991)

    Article  Google Scholar 

  14. A.H. Gray Jr., J.D. Markel, Digital lattice and ladder filter synthesis. IEEE Trans. Audio Electroacoust. (AU) 21, 492–500 (1973)

    Article  Google Scholar 

  15. F. Itakura, S. Saito, Digital filtering techniques for speech analysis and synthesis, in Proceedings of the 7th International Congress on Acoustics, Paper 25C–1, Budapest, Hungary (1971), pp. 261–264

    Google Scholar 

  16. M. Tummala, New adaptive normalised lattice algorithm for recursive filters. Electron. Lett. 24, 659–661 (1988)

    Article  Google Scholar 

  17. P.S.R. Diniz, J.E. Cousseau, A. Antoniou, Improved parallel realization of IIR adaptive filters. Proc. IEE Part G: Circuits Device Syst. 140, 322–328 (1993)

    Article  Google Scholar 

  18. P.A. Regalia, Adaptive IIR Filtering for Signal Processing and Control (Marcel Dekker, New York, 1995)

    Google Scholar 

  19. J.M. Romano, M.G. Bellanger, Fast least-squares adaptive notch filtering. IEEE Trans. Acoust. Speech Signal Process. 36, 1536–1540 (1988)

    Article  Google Scholar 

  20. H. Fan, Y. Yang, Analysis of a frequency-domain adaptive IIR filter. IEEE Trans. Acoust. Speech Signal Process. 38, 864–870 (1990)

    Article  Google Scholar 

  21. P.S.R. Diniz, J.E. Cousseau, A. Antoniou, Fast parallel realization for IIR adaptive filters. IEEE Trans. Circuits Syst.-II: Analog Digit. Signal Process. 41, 561–567 (1994)

    Article  Google Scholar 

  22. P.S.R. Diniz, A. Antoniou, Digital-filter structures based on the concept of the voltage-conversion generalized immittance converter. Can. J. Electr. Comput. Eng. 13, 90–98 (1988)

    Article  Google Scholar 

  23. H. Fan, A structural view of asymptotic convergence speed of adaptive IIR filtering algorithms: part I-infinite precision implementation. IEEE Trans. Signal Process. 41, 1493–1517 (1993)

    Article  Google Scholar 

  24. J.E. Cousseau, P.S.R. Diniz, G. Sentoni, O. Agamennoni, On orthogonal realizations for adaptive IIR filters. Int. J. Circuit Theory Appl. 28 (Wiley), 481–500 (2000)

    Article  Google Scholar 

  25. K.J. \(\dot{{\rm A}}\)ström, T. Söderström, Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model. IEEE Trans. Autom. Control (AC) 19, 769–773 (1974)

    Google Scholar 

  26. T. Söderström, On the uniqueness of maximum likelihood identification. Automatica 11, 193–197 (1975)

    Article  MathSciNet  Google Scholar 

  27. S.D. Stearns, Error surfaces of recursive adaptive filters. IEEE Trans. Acoust. Speech Signal Process. (AssP) 29, 763–766 (1981)

    Article  Google Scholar 

  28. T. Söderström, P. Stoica, Some properties of the output error model. Automatica 18, 93–99 (1982)

    Article  Google Scholar 

  29. H. Fan, M. Nayeri, On error surfaces of sufficient order adaptive IIR filters: proofs and counterexamples to a unimodality conjecture. IEEE Trans. Acoust. Speech Signal Process. 37, 1436–1442 (1989)

    Article  MathSciNet  Google Scholar 

  30. M. Nayeri, Uniqueness of MSOE estimates in IIR adaptive filtering; a search for necessary conditions, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Glasgow, Scotland (1989), pp. 1047–1050

    Google Scholar 

  31. M. Nayeri, H. Fan, W.K. Jenkins, Some characteristics of error surfaces for insufficient order adaptive IIR filters. IEEE Trans. Acoust. Speech Signal Process. 38, 1222–1227 (1990)

    Article  Google Scholar 

  32. L. Ljung, System Identification: Theory for the User (Prentice Hall, Englewood Cliffs, 1987)

    Google Scholar 

  33. T. Söderström, P. Stoica, System Identification (Prentice Hall International, Hempstead, 1989)

    Google Scholar 

  34. M. Nayeri, W.K. Jenkins, Alternate realizations to adaptive IIR filters and properties of their performance surfaces. IEEE Trans. Circuits Syst. 36, 485–496 (1989)

    Article  MathSciNet  Google Scholar 

  35. S.L. Netto, P.S.R. Diniz, P. Agathoklis, Adaptive IIR filtering algorithms for system identification: a general framework. IEEE Trans. Educ. 26, 54–66 (1995)

    Article  Google Scholar 

  36. J.M. Mendel, Discrete Techniques of Parameter Estimation: The Equation Error Formulation (Marcel Dekker, New York, 1973)

    Google Scholar 

  37. T. Söderström, P. Stoica, Instrumental Variable Methods for System Identification (Springer, New York, 1983)

    Google Scholar 

  38. J.-N. Lin, R. Unbehauen, Bias-remedy least mean square equation error algorithm for IIR parameter recursive estimation. IEEE Trans. Signal Process. 40, 62–69 (1992)

    Article  Google Scholar 

  39. P.S.R. Diniz, J.E. Cousseau, A family of equation-error based IIR adaptive algorithms, in IEEE Proceedings on Midwest Symposium of Circuits and Systems, Lafayette, LA (1994), pp. 1083–1086

    Google Scholar 

  40. J.E. Cousseau, P.S.R. Diniz, A general consistent equation-error algorithm for adaptive IIR filtering. Signal Process. 56, 121–134 (1997)

    Article  Google Scholar 

  41. K. Steiglitz, L.E. McBride, A technique for the identification of linear systems. IEEE Trans. Autom. Control (AC) 10, 461–464 (1965)

    Article  Google Scholar 

  42. J.E. Cousseau, P.S.R. Diniz, A consistent Steiglitz-McBride algorithm, in Proceedings of the IEEE International Symposium of Circuits and Systems, Chicago, IL (1993), pp. 52–55

    Google Scholar 

  43. J.E. Cousseau, P.S.R. Diniz, New adaptive IIR filtering algorithms based on Steiglitz-McBride method. IEEE Trans. Signal Process. 45, 1367–1371 (1997)

    Article  Google Scholar 

  44. H. Fan, W.K. Jenkins, A new adaptive IIR filter. IEEE Trans. Circuits Syst. (CAS) 33, 939–947 (1986)

    Article  Google Scholar 

  45. T. Söderström, P. Stoica, On the stability of dynamic models obtained by least squares identification. IEEE Trans. Autom. Control (AC) 26, 575–577 (1981)

    Article  MathSciNet  Google Scholar 

  46. J.B. Kenney, C.E. Rohrs, The composite regressor algorithm for IIR adaptive systems. IEEE Trans. Signal Process. 41, 617–628 (1993)

    Article  Google Scholar 

  47. S.L. Netto, P.S.R. Diniz, Composite algorithms for adaptive IIR filtering. IEE Electron. Lett. 28, 886–888 (1992)

    Article  Google Scholar 

  48. P. Stoica, T. Söderström, The Steiglitz-McBride identification algorithm revisited–convergence analysis and accuracy aspects. IEEE Trans. Autom. Control (AC) 26, 712–717 (1981)

    Article  MathSciNet  Google Scholar 

  49. B.E. Usevitch, W.K. Jenkins, A cascade implementation of a new IIR adaptive digital filter with global convergence and improved convergence rates, in Proceedings of the IEEE International Symposium of Circuits and Systems, Portland, OR (1989), pp. 2140–2142

    Google Scholar 

  50. P.A. Regalia, Stable and efficient lattice algorithms for adaptive IIR filtering. IEEE Trans. Signal Process. 40, 375–388 (1992)

    Article  Google Scholar 

  51. J.E. Cousseau, P.S.R. Diniz, A new realization of IIR echo cancellers using the Steiglitz-McBride method, in Proceedings of the IEEE International Telecommunication Symposium, Rio de Janeiro, Brazil (1994), pp. 11–14

    Google Scholar 

  52. V.L. Stonick, M.H. Cheng, Adaptive IIR filtering: composite regressor method, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia (1994)

    Google Scholar 

  53. H. Fan, M. Doroslovac̆ki, On ‘global convergence’ of Steiglitz–McBride adaptive algorithm. IEEE Trans. Circuits Syst.-II: Analog Digit. Signal Process. 40, 73–87 (1993)

    Article  Google Scholar 

  54. M.H. Cheng, V.L. Stonick, Convergence, convergence point and convergence rate for Steiglitz-McBride method: a unified approach, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia (1994)

    Google Scholar 

  55. P.M. Crespo, M.L. Honig, Pole-zero decision feedback equalization with a rapidly converging adaptive IIR algorithm. IEEE J. Sel. Areas Commun. 9, 817–828 (1991)

    Article  Google Scholar 

  56. J.J. Shynk, Adaptive IIR filtering. IEEE ASSP Mag. 6, 4–21 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo S. R. Diniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diniz, P.S.R. (2020). Adaptive IIR Filters. In: Adaptive Filtering. Springer, Cham. https://doi.org/10.1007/978-3-030-29057-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29057-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29056-6

  • Online ISBN: 978-3-030-29057-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics