Skip to main content

Understanding Neural Networks via Feature Visualization: A Survey

  • Chapter
  • First Online:
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11700))

Abstract

A neuroscience method to understanding the brain is to find and study the preferred stimuli that highly activate an individual cell or groups of cells. Recent advances in machine learning enable a family of methods to synthesize preferred stimuli that cause a neuron in an artificial or biological brain to fire strongly. Those methods are known as Activation Maximization (AM) [10] or Feature Visualization via Optimization. In this chapter, we (1) review existing AM techniques in the literature; (2) discuss a probabilistic interpretation for AM; and (3) review the applications of AM in debugging and explaining networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, “neuron”, “cell”, “unit”, and “feature” are used interchangeably.

  2. 2.

    Also sometimes referred to as feature visualization [29, 32, 48]. In this chapter, the phrase “visualize a unit” means “synthesize preferred images for a single neuron”.

  3. 3.

    Therefore, hereafter, we will write a(x) instead of \(a(\theta , x)\), omitting \(\theta \), for simplicity.

  4. 4.

    We abuse notation slightly in the interest of space and denote as \(N(0, \epsilon _3^2)\) a sample from that distribution. The first step size is given as \(\epsilon _{12}\) in anticipation of later splitting into separate \(\epsilon _1\) and \(\epsilon _2\) terms.

  5. 5.

    \(\epsilon _3 = 0\) because noise was not used in DGN-AM [27].

  6. 6.

    https://www.youtube.com/watch?v=IOYnIK6N5Bg.

References

  1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)

    Article  Google Scholar 

  2. Alcorn, M.A., et al.: Strike (with) a pose: neural networks are easily fooled by strange poses of familiar objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4845–4854. IEEE (2019)

    Google Scholar 

  3. Baer, M., Connors, B.W., Paradiso, M.A.: Neuroscience: Exploring the brain (2007)

    Google Scholar 

  4. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), pp. 3319–3327. IEEE (2017)

    Google Scholar 

  5. Bengio, Y., Mesnil, G., Dauphin, Y., Rifai, S.: Better mixing via deep representations. In: International Conference on Machine Learning, pp. 552–560 (2013)

    Google Scholar 

  6. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Neural photo editing with introspective adversarial networks. arXiv preprint arXiv:1609.07093 (2016)

  7. Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

    Google Scholar 

  8. Donahue, J., Hendricks, L.A., Guadarrama, S., Rohrbach, M., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2625–2634 (2015)

    Google Scholar 

  9. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 658–666 (2016)

    Google Scholar 

  10. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Dept. IRO, Université de Montréal, Technical report 4323 (2009)

    Google Scholar 

  11. Fong, R., Vedaldi, A.: Net2vec: quantifying and explaining how concepts are encoded by filters in deep neural networks. arXiv preprint arXiv:1801.03454 (2018)

  12. Goh, G.: Image synthesis from Yahoo Open NSFW (2016). https://opennsfw.gitlab.io

  13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)

    Google Scholar 

  14. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148(3), 574–591 (1959)

    Article  Google Scholar 

  15. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  16. Kabilan, V.M., Morris, B., Nguyen, A.: Vectordefense: vectorization as a defense to adversarial examples. arXiv preprint arXiv:1804.08529 (2018)

  17. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J., et al.: Principles of Neural Science, vol. 4. McGraw-Hill, New York (2000)

    Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)

    Google Scholar 

  19. Le, Q.V.: Building high-level features using large scale unsupervised learning. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8595–8598. IEEE (2013)

    Google Scholar 

  20. Li, Y., Yosinski, J., Clune, J., Lipson, H., Hopcroft, J.: Convergent learning: do different neural networks learn the same representations? In: Feature Extraction: Modern Questions and Challenges, pp. 196–212 (2015)

    Google Scholar 

  21. Mahendran, A., Vedaldi, A.: Visualizing deep convolutional neural networks using natural pre-images. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), pp. 233–255 (2016)

    Article  MathSciNet  Google Scholar 

  22. Malakhova, K.: Visualization of information encoded by neurons in the higher-level areas of the visual system. J. Opt. Technol. 85(8), 494–498 (2018)

    Article  Google Scholar 

  23. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Proc. 73, 1–15 (2017)

    MathSciNet  Google Scholar 

  24. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: going deeper into neural networks. Google Research Blog (2015). Accessed 20 June

    Google Scholar 

  25. Nguyen, A., University of Wyoming. Computer Science Department, U.: AI Neuroscience: Visualizing and Understanding Deep Neural Networks. University of Wyoming (2017). https://books.google.com/books?id=QCexswEACAAJ

  26. Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., Yosinski, J.: Plug & play generative networks: conditional iterative generation of images in latent space. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), pp. 3510–3520. IEEE (2017)

    Google Scholar 

  27. Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Advances in Neural Information Processing Systems, pp. 3387–3395 (2016)

    Google Scholar 

  28. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), pp. 427–436 (2015)

    Google Scholar 

  29. Nguyen, A., Yosinski, J., Clune, J.: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks. In: Visualization for Deep Learning Workshop, ICML Conference (2016)

    Google Scholar 

  30. Nguyen, A., Yosinski, J., Clune, J.: Understanding innovation engines: automated creativity and improved stochastic optimization via deep learning. Evol. Comput. 24(3), 545–572 (2016)

    Article  Google Scholar 

  31. Nguyen, A.M., Yosinski, J., Clune, J.: Innovation engines: automated creativity and improved stochastic optimization via deep learning. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 959–966. ACM (2015)

    Google Scholar 

  32. Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill 2(11), e7 (2017)

    Article  Google Scholar 

  33. Olah, C., et al.: The building blocks of interpretability. Distill 3(3), e10 (2018)

    Article  Google Scholar 

  34. Palazzo, S., Spampinato, C., Kavasidis, I., Giordano, D., Shah, M.: Decoding brain representations by multimodal learning of neural activity and visual features. arXiv preprint arXiv:1810.10974 (2018)

  35. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing of deep learning systems. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 1–18. ACM (2017)

    Google Scholar 

  36. Ponce, C.R., Xiao, W., Schade, P., Hartmann, T.S., Kreiman, G., Livingstone, M.S.: Evolving super stimuli for real neurons using deep generative networks. bioRxiv, p. 516484 (2019)

    Google Scholar 

  37. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant visual representation by single neurons in the human brain. Nature 435(7045), 1102–1107 (2005)

    Article  Google Scholar 

  38. Roberts, G.O., Rosenthal, J.S.: Optimal scaling of discrete approximations to langevin diffusions. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 60(1), 255–268 (1998)

    Article  MathSciNet  Google Scholar 

  39. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533 (1986)

    Article  Google Scholar 

  40. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  41. Shen, G., Horikawa, T., Majima, K., Kamitani, Y.: Deep image reconstruction from human brain activity. PLoS Comput. Biol. 15(1), e1006633 (2019)

    Article  Google Scholar 

  42. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR Workshop (2014)

    Google Scholar 

  43. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  44. Szegedy, C., et al.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013)

    Google Scholar 

  45. Tyka, M.: Class visualization with bilateral filters. https://mtyka.github.io/deepdream/2016/02/05/bilateral-class-vis.html. Accessed 26 June 2018

  46. Wei, D., Zhou, B., Torrabla, A., Freeman, W.: Understanding intra-class knowledge inside CNN. arXiv preprint arXiv:1507.02379 (2015)

  47. Yeh, R., Chen, C., Lim, T.Y., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with perceptual and contextual losses. arxiv preprint. arXiv preprint arXiv:1607.07539 (2016)

  48. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural networks through deep visualization. In: Deep Learning Workshop, ICML Conference (2015)

    Google Scholar 

  49. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  50. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  51. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)

    Google Scholar 

  52. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 633–641. IEEE (2017)

    Google Scholar 

  53. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  54. Øygard, A.M.: Visualizing GoogLeNet classes — audun m øygard. https://www.auduno.com/2015/07/29/visualizing-googlenet-classes/. Accessed 26 June 2018

Download references

Acknowledgements

Anh Nguyen is supported by the National Science Foundation under Grant No. 1850117, Amazon Research Credits, Auburn University, and donations from Adobe Systems Inc. and Nvidia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, A., Yosinski, J., Clune, J. (2019). Understanding Neural Networks via Feature Visualization: A Survey. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science(), vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28954-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28953-9

  • Online ISBN: 978-3-030-28954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics