Skip to main content

From Quasi-static to Kinodynamic Planning for Spherical Tensegrity Locomotion

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

Tensegrity-based robots can achieve locomotion through shape deformation and compliance. They are highly adaptable to their surroundings, have light weight, low cost and high endurance. Their high dimensionality and highly dynamic nature, however, complicate motion planning. So far, only rudimentary quasi-static solutions have been achieved, which do not utilize tensegrity dynamics. This work explores a spectrum of planning methods that increasingly allow dynamic motion for such platforms. Symmetries are first identified for a prototypical spherical tensegrity robot, which reduce the number of needed gaits. Then, a numerical process is proposed for generating quasi-static gaits that move forward the system’s center of mass in different directions. These gaits are combined with a search method to achieve a quasi-static solution. In complex environments, however, this approach is not able to fully explore the space and utilize dynamics. This motivates the application of sampling-based, kinodynamic planners. This paper proposes such a method for tensegrity locomotion that is informed and has anytime properties. The proposed solution allows the generation of dynamic motion and provides good quality solutions. Evaluation using a physics-based model for the prototypical robot highlight the benefits of the proposed scheme and the limits of quasi-static solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. NASA Tensegrity Robotics Toolkit. http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity/ntrt

  2. Aldrich, J.B., Skelton, R.E., Delgado, K.K.: Control synthesis for light and agile robotic tensegrity structures. In: ACC (2003)

    Google Scholar 

  3. Bliss, T., Iwasaki, T., Bart-Smith, H.: Central pattern generator control of a tensegrity swimmer. Trans. Mech. 18(2) (2013)

    Google Scholar 

  4. Bohm, V., Zimmermann, K.: Vibration-driven mobile robots based on single actuated tensegrity structures. In: ICRA (2013). https://doi.org/10.1109/ICRA.2013.6631362

  5. Bruce, J., Caluwaerts, K., Iscen, A., Sabelhaus, A.P., SunSpiral, V.: Design and evolution of a modular tensegrity robot platform. In: ICRA, pp. 3483–3489 (2014)

    Google Scholar 

  6. Caluwaerts, K., Despraz, J., Işçen, A., Sabelhaus, A.P., Bruce, J., et al.: Design and control of compliant tensegrity robots through simulation and hardware validation. JRSI 11(98) (2014). https://doi.org/10.1098/rsif.2014.0520

  7. Friesen, J., Pogue, A., Bewley, T., de Oliveira, M.C., Skelton, R.E., SunSpiral, V.: DuCTT: a tensegrity robot for exploring duct systems. In: ICRA, pp. 4222–4228 (2014). https://doi.org/10.1109/ICRA.2014.6907473

  8. Furuya, H.: Concept of deployable tensegrity structures in space application. IJSS 7(143–151), (1992)

    Google Scholar 

  9. Heartney, E.: Kenneth snelson: forces made visible, 2009 edn. Hudson Hills (2009)

    Google Scholar 

  10. Hernández Juan, S., Skelton, R.E., Mirats Tur, J.M.: Dynamically stable collision avoidance for tensegrity robots. In: ReMAR (2009)

    Google Scholar 

  11. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. Int. J. Robot. Res. (IJRR) 21, 233–255 (2002)

    Article  Google Scholar 

  12. Ingber, D.E.: Architecture of Life. Scientific American (1998)

    Google Scholar 

  13. Iscen, A., Agogino, A., SunSpiral, V., Tumer, K.: Flop and roll: learning robust goal-directed locomotion for a tensegrity robot. In: IROS, pp. 2236–2243 (2014)

    Google Scholar 

  14. Kim, K., Agogino, A.K., Toghyan, A., Moon, D., Taneja, L., Agogino, A.M.: Robust learning of tensegrity robot control for locomotion through form-finding. In: IROS (2015)

    Google Scholar 

  15. Kunz, T., Stilman, M.: Kinodynamic RRTS with fixed time step and best-input extension are not probabilistically complete. In: WAFR, pp. 233–244 (2014)

    Google Scholar 

  16. LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  17. Levin, S.: The tensegrity-truss as a model for spine mechanics: biotensegrity. JMMB 2, 375–388 (2002)

    Google Scholar 

  18. Li, Y., Littlefield, Z., Bekris, K.E.: Asymptotically optimal sampling-based kinodynamic planning. Int. J. Robot. Res. 35(5), 528–564 (2016)

    Article  Google Scholar 

  19. Littlefield, Z., Bekris, K.E.: Informed asymptotically near-optimal planning for field robots with dynamics. In: Conference on Field and Service Robotics (FSR) (2017)

    Google Scholar 

  20. Littlefield, Z., Caluwaerts, K., Bruce, J., SunSpiral, V., Bekris, K.E.: Integrating simulated tensegrity models with efficient motion planning for planetary navigation. In: i-SAIRAS (2016)

    Google Scholar 

  21. Mirats Tur, J.M., Camps, J.: A three-DoF actuated robot. IEEE RAM 18(3), 96–103 (2011). https://doi.org/10.1109/MRA.2011.940991

    Article  Google Scholar 

  22. Mirletz, B., Bhandal, P., Adams, R.D., Agogino, A.K., Quinn, R.D., SunSpiral, V.: Goal directed CPG based control for high DOF tensegrity spines traversing irregular terrain. Soft Robot. (2015)

    Google Scholar 

  23. Mirletz, B.T., Park, I.W., Quinn, R.D., SunSpiral, V.: Towards bridging the reality gap between tensegrity simulation and robotic hardware. In: IROS (2015)

    Google Scholar 

  24. Paul, C., Valero-Cuevas, F.J., Lipson, H.: Design and control of tensegrity robots for locomotion. TRO 22(5) (2006). https://doi.org/10.1109/TRO.2006.878980

  25. Pinaud, J.P., Masic, M., Skelton, R.E.: Path planning for the deployment of tensegrity structures. In: SPIE ISSSM (2003)

    Google Scholar 

  26. Porta, J.M., Hernández Juan, S.: Path planning for active tensegrity structures. IJSS 78–79, 47–56 (2016). https://doi.org/10.1016/j.ijsolstr.2015.09.018, http://www.sciencedirect.com/science/article/pii/S0020768315004035

  27. Rhode-Barbarigos, L., Schulin, C., Ali, N.B.H., Motro, R., Smith, I.F.C.: Mechanism-based approach for the deployment of a tensegrity ring-module. JSE, 539–548 (2012)

    Google Scholar 

  28. Rovira, A.G., Mirats Tur, J.M.: Control and simulation of a tensegrity-based mobile robot. RAS 57(5), 526–535 (2009)

    Google Scholar 

  29. Sabelhaus, A.P., Bruce, J., Caluwaerts, K., Manovi, P., Firoozi, R.F., Dobi, S., et al.: System design and locomotion of SUPERball, an untethered tensegrity robot. In: ICRA, pp. 2867–2873. IEEE (2015)

    Google Scholar 

  30. Shibata, M., Saijyo, F., Hirai, S.: Crawling by body deformation of tensegrity structure robots. In: ICRA (2009)

    Google Scholar 

  31. Skelton, R.E., de Oliveira, M.C.: Tensegrity Systems (2009)

    Google Scholar 

  32. Skelton, R.E., Sultan, C.: Controllable tensegrity: a new class of smart structures. In: Proceedings of the SPIE (1997)

    Google Scholar 

  33. van de Wijdeven, J., de Jager, A.: Shape change of tensegrity structures: design and control. In: ACC (2005)

    Google Scholar 

  34. Wroldsen, A.S., de Oliveira, M.C., Skelton, R.E.: A discussion on control of tensegrity systems. In: CDC (2006)

    Google Scholar 

  35. Xu, X., Sun, F., Luo, Y., Xu, Y.: Collision-free path planning of tensegrity structures. JSE (2013)

    Google Scholar 

  36. Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of Terrestrial Locomotion. Springer, Berlin (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas E. Bekris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Littlefield, Z., Surovik, D., Wang, W., Bekris, K.E. (2020). From Quasi-static to Kinodynamic Planning for Spherical Tensegrity Locomotion. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_64

Download citation

Publish with us

Policies and ethics