Skip to main content

Stochastic Motion Planning for Hopping Rovers on Small Solar System Bodies

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

Hopping rovers have emerged as a promising platform for the future surface exploration of small Solar System bodies, such as asteroids and comets. However, hopping dynamics are governed by nonlinear gravity fields and stochastic bouncing on highly irregular surfaces, which pose several challenges for traditional motion planning methods. This paper presents the first ever discussion of motion planning for hopping rovers that explicitly accounts for various sources of uncertainty. We first address the problem of planning a single hopping trajectory by developing (1) an algorithm for robustly solving Lambert’s orbital boundary value problems in irregular gravity fields, and (2) a method for computing landing distributions by propagating control and model uncertainties—from which, a time/energy-optimal hop can be selected using a (myopic) policy gradient. We then cast the sequential planning problem as a Markov decision process and apply a sample-efficient, off-line, off-policy reinforcement learning algorithm—namely, a variant of least squares policy iteration (LSPI)—to derive approximately optimal control policies that are safe, efficient, and amenable to real-time implementation on computationally-constrained rover hardware. These policies are demonstrated in simulation to be robust to modelling errors and outperform previous heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Non-discounting is stable since the reward is always negative and each episode must terminate.

References

  1. Castillo, J., Pavone, M., Nesnas, I., Hoffman, J.A.: Expected science return of spatially-extended in-situ exploration at small Solar System bodies. In: IEEE Aerospace Conference (2012)

    Google Scholar 

  2. Ambrose, R., Nesnas, I.A.D., Chandler, F., Allen, B.D., Fong, T., Matthies, L., Mueller, R.: NASA technology roadmaps: TA 4: robotics and autonomous systems. Technical report, NASA (2015)

    Google Scholar 

  3. Dietze, C., Herrmann, F., Kuß, S., Lange, C., Scharringhausen, M., Witte, L., van Zoest, T., Yano, H.: Landing and mobility concept for the small asteroid lander MASCOT on asteroid 1999 JU3. In: International Astronautical Congress (2010)

    Google Scholar 

  4. Yoshimitsu, T., Kubota, T., Nakatani, I., Adachi, T., Saito, H.: Micro-hopping robot for asteroid exploration. Acta Astronaut. 52(2–6), 441–446 (2003)

    Article  Google Scholar 

  5. Abercromby, A.F.J., Gernhardt, M.L., Chappell, S.P., Lee, D.E., Howe, A.S.: Human exploration of phobos. In: IEEE Aerospace Conference (2015)

    Google Scholar 

  6. Allen, R., Pavone, M., McQuin, C., Nesnas, I.A., Castillo-Rogez, J.C., Nguyen, T.N., Hoffman, J.A.: Internally-actuated rovers for all-access surface mobility: theory and experimentation. In: Proceedings IEEE Conference on Robotics and Automation (2013)

    Google Scholar 

  7. Reid, R.G., Roveda, L., Nesnas, I.A.D., Pavone, M.: Contact dynamics of internally-actuated platforms for the exploration of small solar system bodies. In: Proceedings of i-SAIRAS (2014)

    Google Scholar 

  8. Hockman, B., Frick, A., Nesnas, I.A.D., Pavone, M.: Design, control, and experimentation of internally-actuated rovers for the exploration of low-gravity planetary bodies. J. Field Robot. 34(1), 5–24 (2016)

    Article  Google Scholar 

  9. Hockman, B., Reid, R.G., Nesnas, I.A.D., Pavone, M.: Experimental methods for mobility and surface operations of microgravity robots. In: International Symposium on Experimental Robotics (2016)

    Google Scholar 

  10. Bajracharya, M., Maimone, M.W., Helmick, D.: Autonomy for mars rovers: past, present, and future. IEEE Comput. 41(12), 44–50 (2008)

    Article  Google Scholar 

  11. Higo, S. Nakatani, I., Yoshimitsu, T.: Localization over small body surface by radio ranging. In: Proceedings of Space Sciences and Technology Conference (2005)

    Google Scholar 

  12. So, E.W.Y., Yoshimitsu, T., Kubota, T.: Relative localization of a hopping rover on an asteroid surface using optical flow. In: SICE Anual Conference (2008)

    Google Scholar 

  13. Scheeres, D.J.: Orbit mechanics about asteroids and comets. AIAA J. Guid. Control. Dyn. 35(3), 987–997 (2012)

    Article  Google Scholar 

  14. Tardivel, S., Scheeres, D.J., Michel, P., Van wal, S., Ánchez, P.S.: Contact motion on surface of asteroid. AIAA J. Spacecr. Rocket. 51(6), 1857–1871 (2014)

    Google Scholar 

  15. Van wal, S., Tardivel, S., Scheeres, D.J.: High-fidelity small body lander simulations. In: International Conference on Astrodynamics Tools and Techniques (2016)

    Google Scholar 

  16. Bellerose, J., Scheeres, D.J.: Dynamics and control for surface exploration of small bodies. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit (2008)

    Google Scholar 

  17. Klesh, A., Bellerose, J., Kubota, T.: Guidance and control of hoppers for small body exploration. In: International Astronautical Congress (2010)

    Google Scholar 

  18. Hand, E.: Philae probe makes bumpy touchdown on a comet. Science 346(6212), 900–901 (2014)

    Article  Google Scholar 

  19. Sharma, I., Burns, J.A., Hui, C.-Y.: Nutational damping times in solids of revolution. Mon. Not. R. Astron. Soc. 359(1), 79–92 (2005)

    Article  Google Scholar 

  20. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 castalia. Celest. Mech. Dyn. Astron. 65(3), 313–344 (1996)

    MATH  Google Scholar 

  21. Murdoch, N., Martinez, I.A., Sunday, C., Zenou, E., Cherrier, O., Cadu, A., Gourinat, Y.: An experimental study of low-velocity impacts into granular material in reduced gravity. Mon. Not. R. Astron. Soc. 468(2), 1259–1272 (2017)

    Google Scholar 

  22. Gooding, R.H.: A procedure for the solution of lambert’s orbital boundary-value problem. Celest. Mech. Dyn. Astron. 48(2), 145–165 (1990)

    MATH  Google Scholar 

  23. Woollands, R.M., Younes, A.B., Junkins, J.L.: New solutions for the perturbed lambert problem using regularization and picard iteration. AIAA J. Guid. Control. Dyn. 38(9), 1548–1562 (2015)

    Article  Google Scholar 

  24. Lagoudakis, M.G. Parr, R.: Least-squares policy iteration. J. Mach. Learn. Res. 4(Dec), 1107–1149 (2003)

    Google Scholar 

  25. Konidaris, G., Osentoski, S., Thomas, P.: Value function approximation in reinforcement learning using the Fourier basis. In: Proceedings AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

Download references

Acknowledgements

This work is supported by NASA under the Innovative Advanced Concepts program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Hockman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hockman, B., Pavone, M. (2020). Stochastic Motion Planning for Hopping Rovers on Small Solar System Bodies. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_60

Download citation

Publish with us

Policies and ethics