Skip to main content

Localization in Inconsistent WiFi Environments

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

As WiFi becomes more and more popular, indoor environments are often covered with access points (APs) many of which are temporarily generated by mobile devices. On the other hand, more and more infrastructural APs are equipped with beamforming capabilities which adjust radiation patterns according to client locations. These APs have large variations of signal fields. The inconsistent WiFi environments present a challenge for localization tasks when the client cannot communicate with APs. Here we report a new algorithm targeted at handling inconsistent APs. We develop a windowed majority voting and statistical hypothesis testing-based approach to remove APs with large displacements between reference and query data sets. We then refine the localization by applying maximum likelihood estimation method to the closed-form posterior location distribution over the filtered signal strength and AP sets in the time window. We determine the time window length by minimizing Shannon entropy of the posterior location distribution. We have implemented our algorithm and our method outperforms its counterparts in physical experiments. Our method achieves a mean localization error of less than 3.7 meters even when \(70\%\) of APs are inconsistent.

This work was supported in part by National Science Foundation under IIS-1318638, NRI-1426752, NRI-1526200, and NRI-1748161.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings of the IEEE International Conference on Computer Communications(INFOCOM), Tel-Aviv, Israel (2000)

    Google Scholar 

  2. Balaguer, B., Erinc, G., Carpin, S.: Combining classification and regression for wifi localization of heterogeneous robot teams in unknown environments. In: The 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012)

    Google Scholar 

  3. Biswas, J., Veloso, M.: WiFi localization and navigation for autonomous indoor mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA), Anchorage, USA (2010)

    Google Scholar 

  4. Carlevaris-Bianco, N., Eustice, R.M.: Learning visual feature descriptors for dynamic lighting conditions. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2769–2776 (2014)

    Google Scholar 

  5. Chen, Y., Yang, Q., Yin, J., Chai, X.: Power-efficient access-point selection for indoor location estimation. IEEE Trans. Knowl. Data Eng. 18(7), 877–888 (2006). July

    Article  Google Scholar 

  6. Chintalapudi, K., Padmanabha Iyer, A., Padmanabhan, V.N.: Indoor localization without the pain. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking (MobiCom) (2010)

    Google Scholar 

  7. Civera, J., Grasa, O.G., Davison, A.J., Montiel, J.M.M.: 1-point RANSAC for extended Kalman filtering: application to real-time structure from motion and visual odometry. J. Field Robot. 27(5), 609–631 (2010)

    Google Scholar 

  8. Deng, Z.-A., Ying, H., Jianguo, Y., Na, Z.: Extended kalman filter for real time indoor localization by fusing wifi and smartphone inertial sensors. Micromachines 6(4), 523–543 (2015)

    Article  Google Scholar 

  9. Dissanayake, G., Sukkarieh, S., Nebot, E., Durrant-Whyte, H.: The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications. IEEE Trans. Robot. Autom. 17(5), 731–747 (2001). Oct

    Article  Google Scholar 

  10. Ferris, B., Fox, D., Lawrence, N.: WiFi-SLAM using Gaussian process latent variable models. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India (2007)

    Google Scholar 

  11. Gjengset, J., Xiong, J., McPhillips, G., Jamieson, K.: Phaser: enabling phased array signal processing on commodity wifi access points. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, pp. 153–164. ACM (2014)

    Google Scholar 

  12. Guvenc, I., Chong, C-C.: A survey on toa based wireless localization and nlos mitigation techniques. IEEE Commun. Surv. Tutor. 11(3) (2009)

    Google Scholar 

  13. Hahnel, D., Burgard, W., Fox, D., Thrun, S.: An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) 1, 206–211 (2003)

    Google Scholar 

  14. He, S., Chan, S.H.G.: Wi-fi fingerprint-based indoor positioning: recent advances and comparisons. IEEE Commun. Surv. Tutor. 18(1), 466–490 (2016)

    Article  Google Scholar 

  15. Howard, A., Siddiqi, S., Sukhatme, G.S.: An experimental study of localization using wireless ethernet. In: Field and Service Robotics, pp. 145–153. Springer (2003)

    Google Scholar 

  16. Huang, J., Millman, D., Quigley, M., Stavens, D., Thrun, S., Aggarwal, A.: Efficient, generalized indoor wifi graphslam. In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 1038–1043 (2011)

    Google Scholar 

  17. Jin, M., Koo, B., Lee, S., Park, C., Lee, M.J., Kim, S.: IMU-assisted nearest neighbor selection for real-time WiFi fingerprinting positioning. In: International Conference onIndoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland (2014)

    Google Scholar 

  18. Kiran Raj Joshi: Steven Siying Hong, and Sachin Katti. Localizing interfering radios. In NSDI. USENIX, Pinpoint (2013)

    Google Scholar 

  19. Kim, C., Song, D., Xu, Y., Yi, J., Wu, X.: Cooperative search of multiple unknown transient radio sources using multiple paired mobile robots. IEEE Trans. Robot. 30(5), 1161–1173 (2014). Oct

    Article  Google Scholar 

  20. Kim, C., Song, D., Yi, J., Wu, X.: Decentralized searching of multiple unknown and transient radio sources with paired robots. Engineering 1(1), 058–065 (2015)

    Article  Google Scholar 

  21. Kim, D.H., Kim, J.H.: Effective background model-based rgb-d dense visual odometry in a dynamic environment. IEEE Trans. Robot. 32(6), 1565–1573 (2016). Dec

    Article  Google Scholar 

  22. Kotaru, M., Joshi, K., Bharadia, D., Katti, S.: Spotfi: decimeter level localization using wifi. SIGCOMM Comput. Commun. Rev. 45(4), 269–282 (2015). Aug

    Article  Google Scholar 

  23. Ladd, A.M., Bekris, K.E., Rudys, A., Kavraki, L.E., Wallach, D.S.: Robotics-based location sensing using wireless ethernet. Wirel. Netw. 11(1–2), 189–204 (2005)

    Google Scholar 

  24. Laoudias, C., Michaelides, M.P., Panayiotou, C.G.: Fault detection and mitigation in wlan rss fingerprint-based positioning. J. Locat. Based Serv. 6(2), 101–116 (2012)

    Google Scholar 

  25. Li, W.W.L., Iltis, R.A., Win, M.Z.: A smartphone localization algorithm using rssi and inertial sensor measurement fusion. In: 2013 IEEE Global Communications Conference (GLOBECOM) (2013)

    Google Scholar 

  26. Li, X., Pahlavan, K.: Super-resolution toa estimation with diversity for indoor geolocation. IEEE Trans. Wirel. Commun. 3(1), 224–234 (2004)

    Article  Google Scholar 

  27. Lim, H., Kung, L-C., Hou, J.C., Luo, H.: Zero-configuration indoor localization over IEEE 802.11 wireless infrastructure. Wirel Netw 16(2) (2010)

    Google Scholar 

  28. Liu, H., Gan, Y., Yang, J., Sidhom, S., Wang, Y., Chen, Y., Ye, F.: Push the limit of wifi based localization for smartphones. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking (MobiCom) (2012)

    Google Scholar 

  29. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(6), 1067–1080 (2007)

    Google Scholar 

  30. Lu, Y., Song, D.: Visual navigation using heterogeneous landmarks and unsupervised geometric constraints. In: IEEE Transactions on Robotics (T-RO), vol. 31, pp. 736–749 (2015)

    Google Scholar 

  31. Lu, Y., Song, D.: Robust RGB-D odometry using point and line features. In: IEEE International Conference on Computer Vision (ICCV), Santiago, Chile (2015)

    Google Scholar 

  32. Majdik, A., Gálvez-López, D., Lazea, G., Castellanos, J.A.: Adaptive appearance based loop-closing in heterogeneous environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1256–1263 (2011)

    Google Scholar 

  33. Mariakakis, A.T., Sen, S., Lee, J., Kim, K-H.: Sail: single access point-based indoor localization. In: Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, pp. 315–328. ACM (2014)

    Google Scholar 

  34. Mirowski, P., Ho, T.K., Yi, S., MacDonald, M.: Signalslam: simultaneous localization and mapping with mixed wifi, bluetooth, lte and magnetic signals. In: International Conference on Indoor Positioning and Indoor Navigation, pp. 1–10 (2013)

    Google Scholar 

  35. Nandakumar, R., Chintalapudi, K.K., Padmanabhan, V.N.: Centaur: locating devices in an office environment. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking (2012)

    Google Scholar 

  36. Ocana, M., Bergasa, L.M., Sotelo, M.A., Nuevo, J., Flores, R.: Indoor robot localization system using wifi signal measure and minimizing calibration effort. In: Proceedings of the IEEE International Symposium on Industrial Electronics, Dubrovnik, Croatia (2005)

    Google Scholar 

  37. Quigley, M., Stavens, D., Coates, A., Thrun, S., Sub-meter indoor localization in unmodified environments with inexpensive sensors. In: The IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p. 2010. Taipei, Taiwan (2010)

    Google Scholar 

  38. Saha, S., Chaudhuri, K., Sanghi, D., Bhagwat, P.: Location determination of a mobile device using IEEE 802.11b access point signals. In: IEEE Wireless Communications and Networking Conference(WCNC), New Orleans, LA (2003)

    Google Scholar 

  39. Sen, S., Lee, J., Kim, K-H., Congdon, P.: Avoiding multipath to revive inbuilding wifi localization. In: Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys ’13. ACM (2013)

    Google Scholar 

  40. Serrano, O., Marıa Canas, J., Matellán, V., Rodero, L.: Robot localization using WiFi signal without intensity map, In: International Workshop on Algorithmic Foundationsof Robotics (WAFR), Utrecht/Zeist, The Netherlands (2004)

    Google Scholar 

  41. So, J., Lee, J.-Y., Yoon, C.-H., Park, H.: An improved location estimation method for wifi fingerprint-based indoor localization. Int. J. Softw. Eng. Appl. 7(3), 77–86 (2013)

    Google Scholar 

  42. Song, D., Kim, C., Yi, J.: Simultaneous localization of multiple unknown CSMA-based wireless sensor network nodes using a mobile robot with a directional antenna. J. Intell. Serv. Robots 2(4), 219–233 (2009). Oct

    Article  Google Scholar 

  43. Song, D., Kim, C., Yi, J.: Simultaneous localization of multiple unknown and transient radio sources using a mobile robot. IEEE Trans. Robot. 28(3), 668–680 (2012). June

    Article  Google Scholar 

  44. Sukkarieh, S., Gibbens, P., Grocholsky, B., Willis, K., Durrant-Whyte, H.F. A low-cost, redundant inertial measurement unit for unmanned air vehicles. Int. J. Robot. Res. 19(11), 1089–1103 (2000)

    Google Scholar 

  45. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)

    Google Scholar 

  46. Vasisht, D., Kumar, S., Katabi, D.: Decimeter-level localization with a single wifi access point. In: NSDI (2016)

    Google Scholar 

  47. Wang, H., Sen, S., Elgohary, A., Farid, M., Youssef, M., Roy Choudhury, R.: No need to war-drive: Unsupervised indoor localization. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, MobiSys ’12 (2012)

    Google Scholar 

  48. Whitehouse, K., Karlof, C., Culler, D.: A practical evaluation of radio signal strength for ranging-based localization. SIGMOBILE Mob. Comput. Commun. Rev. 11(1) (2007)

    Google Scholar 

  49. Wu, C., Yang, Z., Liu, Y.: Smartphones based crowdsourcing for indoor localization. IEEE Trans. Mob. Comput. 14(2), 444–457 (2015). Feb

    Article  Google Scholar 

  50. Xiong, J., Jamieson, K.: Arraytrack: a fine-grained indoor location system. In: (NSDI), pp. 71–84. USENIX (2013)

    Google Scholar 

  51. Yi, J., Wang, H., Zhang, J., Song, D., Jayasuriya, S., Liu, J.: Modeling and analysis of skid-steered mobile robots with applications to low-cost inertial measurement unit-based motion estimation. IEEE Trans. Robot. 25(5), 1087–1097 (2009). Oct

    Article  Google Scholar 

  52. Youssef, M.A., Agrawala, A., Udaya Shankar, A.: Wlan location determination via clustering and probability distributions. In: Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003) (2003)

    Google Scholar 

  53. Zhuang, Y., El-Sheimy, N.: Tightly-coupled integration of wifi and mems sensors on handheld devices for indoor pedestrian navigation. IEEE Sens. J. 16(1), 224–234 (2016)

    Article  Google Scholar 

  54. Zou, D., Tan, P.: Coslam: collaborative visual slam in dynamic environments. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 354–366 (2013). Feb

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Chou, B. Li, S. Yeh, A. Kingery, A. Angert, Y. Sun, M. Jin, D. Wang, Y. You, M. Momin, T. Sun, and H. Li for their input and contributions to the NetBot Lab at Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhen Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, HM., Song, D. (2020). Localization in Inconsistent WiFi Environments. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_47

Download citation

Publish with us

Policies and ethics