Skip to main content

Coronary Microcirculatory Dysfunction Evaluation in Chronic Angina

  • Chapter
  • First Online:
Microcirculation
  • 559 Accesses

Abstract

Normal coronary arteries or non-obstructive epicardial stenosis are found frequently during evaluation of patients with chronic angina. We present the clinical evaluation of a young female patient with angina and objective proofs of myocardial ischemia with normal appearance of coronary arteries in whom invasive evaluation identified significant alteration of coronary microvascular function. We analyze the significance of invasive tests which are most frequently involved in clinical practice in evaluation of patients with non-obstructive coronary arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362:886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA). Circulation. 2017;135(11):1075–92.

    Article  PubMed  Google Scholar 

  3. Jespersen L, Hvelplund A, Abildstrøm SZ, Pedersen F, Galatius S, Madsen JK, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33(6):734–44.

    Article  PubMed  Google Scholar 

  4. Shaw LJ, Merz CNB, Pepine CJ, Reis SE, Bittner V, Kip KE, Health Services and Outcomes Research, et al. The economic burden of angina in women with suspected ischemic heart disease blood institute – sponsored Women’s Ischemia Syndrome Evaluation. Circulation. 2006;114:894–904.

    Article  PubMed  Google Scholar 

  5. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003. Available from http://www.ncbi.nlm.nih.gov/pubmed/23996286.

    Article  PubMed  Google Scholar 

  6. Beltrame JF, Crea F, Kaski JC, Ogawa H, Ong P, Sechtem U, et al. International standardization of diagnostic criteria for vasospastic angina. Eur Heart J. 2015;38(33):2565–8.

    Google Scholar 

  7. Ong P, Camici PG, Beltrame JF, Crea F, Shimokawa H, Sechtem U, et al. International standardization of diagnostic criteria for microvascular angina. Int J Cardiol. 2018;250:16–20. https://doi.org/10.1016/j.ijcard.2017.08.068.

    Article  PubMed  Google Scholar 

  8. Marinescu MA, Löffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging. 2015;8(2):210–20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gulati M, Cooper-DeHoff RM, McClure C, Johnson BD, Shaw LJ, Handberg EM, et al. Adverse cardiovascular outcomes in women with nonobstructive coronary artery disease. Arch Intern Med. 2009;169(9):843.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35(17):1101–11. Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4006091&tool=pmcentrez&rendertype=abstract.

    Article  PubMed  Google Scholar 

  11. Feher A, Sinusas AJ. Quantitative assessment of coronary microvascular function. Circ Cardiovasc Imaging. 2017;10(8):1–21.

    Article  Google Scholar 

  12. Driessen RS, Raijmakers PG, Stuijfzand WJ, Knaapen P. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging. 2017;33(7):1021–31. https://doi.org/10.1007/s10554-017-1084-4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu A, Wijesurendra RS, Liu JM, Greiser A, Jerosch-herold M, Forfar JC, et al. Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease. J Am Coll Cardiol. 2018;71(9):957–68.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lichtlen P, Bargheer K, Wenzlaff P. Long-term prognosis of patients with angina- like chest pain and normal coronary angiographic findings. J Am Coll Cardiol. 1995;25:1013–8.

    Article  CAS  PubMed  Google Scholar 

  15. Kemp H, Kronmal R, Vlietstra R, Frye R. Seven year survival of patients with normal or near normal coronary arteriograms: a CASS registry study. J Am Coll Cardiol. 1986;7:479–83.

    Article  CAS  PubMed  Google Scholar 

  16. Aziz A, Hansen HS, Sechtem U, Prescott E, Ong P. Sex-related differences in vasomotor function in patients with angina and unobstructed coronary arteries. J Am Coll Cardiol. 2017;70(19):2349–58.

    Article  PubMed  Google Scholar 

  17. Lee EM, Choi MH, Seo HS, Kim HK, Kim NH, Choi CU, et al. Impact of vasomotion type on prognosis of coronary artery spasm induced by acetylcholine provocation test of left coronary artery. Atherosclerosis. 2017;257:195–200. https://doi.org/10.1016/j.atherosclerosis.2016.09.015.

    Article  CAS  PubMed  Google Scholar 

  18. Halcox JPJ, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, et al. Clinical investigation and reports prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106:653–8.

    Article  PubMed  Google Scholar 

  19. Von Mering GO, Arant CB, Wessel TR, Mcgorray SP, Merz CNB, Sharaf BL, et al. Abnormal coronary vasomotion as a prognostic indicator of cardiovascular events in women. Circulation. 2004;109:722–5.

    Article  Google Scholar 

  20. Reriani M, Sara JD, Flammer A, Gulati R, Rihal C, Lennon R, et al. Coronary endothelial function testing provides superior discrimination compared to standard clinical risk scoring in prediction of cardiovascular events. Coron Artery Dis. 2016;27(3):213–20.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Halcox JPJ, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106(6):653–8.

    Article  PubMed  Google Scholar 

  22. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (Coronary Spastic Angina) (JCS 2013). Circ J. 2014;78(11):2779–801.

    Article  Google Scholar 

  23. Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8(11):1445–53.

    Article  PubMed  Google Scholar 

  24. Park S, Choi BG, Rha S, Kang TS. The multi-vessel and diffuse coronary spasm is a risk factor for persistent angina in patients received anti-angina medication. Medicine (Baltimore). 2018;97(47):e13288.

    Article  Google Scholar 

  25. Brainin P, Frestad D, Prescott E. The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease: a systematic review and meta-analysis. Int J Cardiol. 2018;254:1–9.

    Article  PubMed  Google Scholar 

  26. Beltrame JF, Sasayama S, Maseri A. Racial heterogeneity in coronary artery vasomotor reactivity: differences between Japanese and Caucasian patients. J Am Coll Cardiol. 1999;33(6):1442–52. https://doi.org/10.1016/S0735-1097(99)00073-X.

    Article  CAS  PubMed  Google Scholar 

  27. Ong P, Athanasiadis A, Hill S, Vogelsberg H, Voehringer M, Sechtem U. Coronary artery spasm as a frequent cause of acute coronary syndrome: the CASPAR (Coronary Artery Spasm in Patients With Acute Coronary Syndrome). J Am Coll Cardiol. 2008;52(7):523–7.

    Article  PubMed  Google Scholar 

  28. Montone RA, Niccoli G, Fracassi F, Russo M, Gurgoglione F, Cammà G, et al. Patients with acute myocardial infarction and non-obstructive coronary arteries: safety and prognostic relevance of invasive coronary provocative tests. Eur Heart J. 2018;39(2):91–8.

    CAS  PubMed  Google Scholar 

  29. Ong P, Athanasiadis A, Borgulya G, Voehringer M, Sechtem U. 3-year follow-up of patients with coronary artery spasm as cause of acute coronary syndrome: the CASPAR (coronary artery spasm in patients with acute coronary syndrome) study follow-up. J Am Coll Cardiol. 2011;57(2):147–52. https://doi.org/10.1016/j.jacc.2010.08.626.

    Article  PubMed  Google Scholar 

  30. Echavarría-Pinto M, Van De Hoef TP, Nijjer S, Gonzalo N, Nombela-Franco L, Ibañez B, et al. Influence of the amount of myocardium subtended to a coronary stenosis on the index of microcirculatory resistance. Implications for the invasive assessment of microcirculatory function in ischaemic heart disease. EuroIntervention. 2017;13(8):944–52.

    Article  PubMed  Google Scholar 

  31. Lee JM, Layland J, Jung JH, Lee HJ, Echavarria-Pinto M, Watkins S, et al. Integrated physiologic assessment of ischemic heart disease in real-world practice using index of microcirculatory resistance and fractional flow reserve: insights from the International Index of Microcirculatory Resistance Registry. Circ Cardiovasc Interv. 2015;8(11):e002857.

    Article  PubMed  Google Scholar 

  32. Yong AS, Layland J, Fearon WF, Ho M, Shah MG, Daniels D, et al. Calculation of the index of microcirculatory resistance without coronary wedge pressure measurement in the presence of epicardial stenosis. JACC Cardiovasc Interv. 2013;6(1):53–8.

    Article  PubMed  Google Scholar 

  33. Kobayashi Y, Lee JM, Fearon WF, Lee JH, Nishi T, Choi D-H, et al. Three-vessel assessment of coronary microvascular dysfunction in patients with clinical suspicion of ischemia. Circ Cardiovasc Interv. 2017;10(11):e005445. Available from http://circinterventions.ahajournals.org/lookup/doi/10.1161/CIRCINTERVENTIONS.117.005445.

    Article  PubMed  Google Scholar 

  34. Liu A, Wijesurendra RS, Liu JM, Greiser A, Jerosch-herold M, Forfar JC, et al. Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease. J Am Coll Cardiol. 2018;71(9):857–68.

    Google Scholar 

  35. Luo C, Long M, Hu X, Huang Z, Hu C, Gao X, et al. Thermodilution-derived coronary microvascular resistance and flow reserve in patients with cardiac syndrome X. Circ Cardiovasc Interv. 2014;7(1):43–8.

    Article  PubMed  Google Scholar 

  36. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974;34(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  37. Lee JM, Jung JH, Hwang D, Park J, Fan Y, Na SH, et al. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J Am Coll Cardiol. 2016;67(10):1158–69.

    Article  PubMed  Google Scholar 

  38. Van De Hoef TP, Van Lavieren MA, Damman P, Delewi R, Piek MA, Chamuleau SAJ, et al. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv. 2014;7(3):301–11.

    Article  PubMed  Google Scholar 

  39. Ahn J-M, Zimmermann FM, Johnson NP, Shin E-S, Koo B-K, Lee PH, et al. Fractional flow reserve and pressure-bounded coronary flow reserve to predict outcomes in coronary artery disease. Eur Heart J. 2017;38(25):1980–9. https://doi.org/10.1093/eurheartj/ehx139.

    Article  PubMed  Google Scholar 

  40. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia: results from the NHLBI Women’s Ischemia Syndrome Evaluation (WISE) study. J Am Coll Cardiol. 2010;55(25):2825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Bruyne B, Oldroyd KG, Pijls NHJ. Microvascular (dys)function and clinical outcome in stable coronary disease. J Am Coll Cardiol. 2016;67(10):1170–2.

    Article  PubMed  Google Scholar 

  42. Tambe AA, Demany MA, Zimmerman HA, Mascarenhas E. Angina pectoris and slow flow velocity of dye in coronary arteries: a new angiographic finding. Am Heart J. 1972;84:66–71.

    Article  CAS  PubMed  Google Scholar 

  43. Beltrame J, Ganz P. The coronary slow flow phenomenon – a new coronary microvascular disorder. Cardiology. 2002;97:197–202.

    Article  PubMed  Google Scholar 

  44. Hawkins BM, Stavrakis S, Rousan TA, Abu-Fadel M, Eliot S. Coronary slow flow – prevalence and clinical correlations. Circ J. 2012;76:936–42.

    Article  PubMed  Google Scholar 

  45. Alvarez C, Siu H. Coronary slow-flow phenomenon as an under recognized and treatable source of chest pain: case series and literature review. J Investig Med High Impact Case Rep. 2018;6:2324709618789194. Available from file:///pubmed/30038914.

    PubMed  PubMed Central  Google Scholar 

  46. Gori T. Coronary slow flow in a patient with myocarditis. In: Gori T, Fineschi M, editors. Atlas of FFR-guided percutaneous coronary interventions. Cham: Springer; 2016. p. 183–5.

    Chapter  Google Scholar 

  47. Beltrame JF, Turner SP, Leslie SL, Solomon P, Freedman SB, Horowitz JD. The angiographic and clinical benefits of mibefradil in the coronary slow flow phenomenon. J Am Coll Cardiol. 2004;44(1):57–62. https://doi.org/10.1016/j.jacc.2004.03.055.

    Article  CAS  PubMed  Google Scholar 

  48. Yilmaz H, Demir I, Uyar Z. Clinical and coronary angiographic characteristics of patients with coronary slow flow. Acta Cardiol. 2008;63(5):579–84. https://doi.org/10.2143/AC.63.5.2033224.

    Article  PubMed  Google Scholar 

  49. Sezgin AT, Sigirci A, Barutcu I, Topal E, Sezgin N, Ozdemir R, Yetkin E, Tandogan I, Kosar F, Ermis N, Yologlu S, Bariskaner ECS. Vascular endothelial function in patients with slow coronary flow. Coron Artery Dis. 2003;14(2):155–61.

    Article  PubMed  Google Scholar 

  50. Tiryakioglu S, Tiryakioglu O, Ari H, Basel MC, Bozat T. Effects of nebivolol on endothelial function and exercise parameters in patients with slow coronary flow. Clin Med Cardiol. 2009;3:115–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fineschi M, Bravi A, Gori T. The “slow coronary flow” phenomenon: evidence of preserved coronary flow reserve despite increased resting microvascular resistances. Int J Cardiol. 2008;127(3):358–61.

    Article  PubMed  Google Scholar 

  52. Manginas A, Gatzov P, Chasikidis C, Voudris V, Pavlides G, Cokkinos DV. Estimation of coronary flow reserve using the Thrombolysis In Myocardial Infarction (TIMI) frame count method. Am J Cardiol. 1999;83(11):1562–5.

    Article  CAS  PubMed  Google Scholar 

  53. Mangieri E, et al. Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries. Cathet Cardiovasc Diagn. 1996;37:375–81.

    Article  CAS  PubMed  Google Scholar 

  54. Li L, Gu Y, Liu T, Bai Y, Hou L, Cheng Z, et al. A randomized, single-center double-blinded trial on the effects of diltiazem sustained-release capsules in patients with coronary slow flow phenomenon at 6-month follow-up. PLoS One. 2012;7(6):1–5.

    Google Scholar 

  55. Kurtoglu N, Akcay A, Dindar I. Usefulness of oral dipyridamole therapy for angiographic slow coronary artery flow. Am J Cardiol. 2001;87(6):777–9.

    Article  CAS  PubMed  Google Scholar 

  56. Izzo P, Macchi A, de Gennaro L, Gaglione A, Di Biase M, Brunetti ND. Recurrent angina after coronary angioplasty: mechanisms, diagnostic and therapeutic options. Eur Hear J Acute Cardiovasc Care. 2012;1(2):158–69.

    Article  Google Scholar 

  57. Jabs A, Hink U, Fineschi M, Münzel T, Gori T. How should I treat a patient with typical angina, typical angiography, negative FFR? EuroIntervention. 2013;9(1):157–8.

    Article  PubMed  Google Scholar 

  58. Van Lavieren MA, Van De Hoef TP, Sjauw KD, Piek JJ. How should I treat a patient with refractory angina and a single stenosis with normal FFR but abnormal CFR? EuroIntervention. 2015;11(1):125–6.

    Article  PubMed  Google Scholar 

  59. Van De Hoef TP, Nolte F, Echavarría-Pinto M, Van Lavieren MA, Damman P, Chamuleau SAJ, et al. Impact of hyperaemic microvascular resistance on fractional flow reserve measurements in patients with stable coronary artery disease: insights from combined stenosis and microvascular resistance assessment. Heart. 2014;100(12):951–9.

    Article  PubMed  Google Scholar 

  60. Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries: the ACOVA study (abnormal coronary vasomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol. 2012;59(7):655–62. Available from:. https://doi.org/10.1016/j.jacc.2011.11.015.

    Article  CAS  PubMed  Google Scholar 

  61. Bory M, Pierron F, Panagides D, Bonnet JL, Yvorra S, Desfossez L. Coronary artery spasm in patients with normal or near normal coronary arteries. Eur Heart J. 1996;17:1015–21.

    Article  CAS  PubMed  Google Scholar 

  62. Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, et al. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36(45):3134–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dorobantu, M., Calmac, L. (2020). Coronary Microcirculatory Dysfunction Evaluation in Chronic Angina. In: Dorobantu, M., Badimon, L. (eds) Microcirculation. Springer, Cham. https://doi.org/10.1007/978-3-030-28199-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28199-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28198-4

  • Online ISBN: 978-3-030-28199-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics