Skip to main content

Proangiogenic and Proarteriogenic Therapies in Coronary Microvasculature Dysfunction

  • Chapter
  • First Online:
Microcirculation

Abstract

Advances on early reperfusion therapies focused on the revascularization of the coronary epicardial arteries have lead, in the last decades, to reduced mortality in acute myocardial infarction (MI) patients. However, a large proportion of patients show inadequate myocardial perfusion because of dysfunction of the microcirculation. Importantly, impaired microvascular reperfusion correlates with the extension of infarct size. Hence, the high prevalence of microvascular dysfunction after reperfusion therapies and the poor prognostic associated with this process supports the need to search for therapeutic strategies aimed to restore the microvascular network and allow the diffusion of oxygen and nutrients to the ischemic damaged tissues. Any advancement on the molecular and cellular mechanisms that induce the repair process of microvascular dysfunction is of great interest.

In this chapter we will review the different proteins and cells known to participate in the arteriogenic and angiogenic processes to repair the coronary microcirculation. In addition, we will also discuss the potential pharmacological approaches and angiogenic and arteriogenic therapies that may promote microvasculature recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011;123:e18–e209. https://doi.org/10.1161/CIR.0b013e3182009701.

    Article  PubMed  Google Scholar 

  2. Keeley EC. Abciximab following clopidogrel reduces post-PCI complications in patients with acute coronary syndromes. Nat Clin Pract Cardiovasc Med. 2006;3:650–1. https://doi.org/10.1038/ncpcardio0706.

    Article  PubMed  Google Scholar 

  3. Sabia PJ, Powers ER, Ragosta M, Sarembock IJ, Burwell LR, Kaul S. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med. 1992;327:1825–31. https://doi.org/10.1056/NEJM199212243272601.

    Article  CAS  PubMed  Google Scholar 

  4. Meier P, Gloekler S, Zbinden R, Beckh S, de Marchi SF, Zbinden S, et al. Beneficial effect of recruitable collaterals. A 10- year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007;116:975–83. https://doi.org/10.1161/CIRCULATIONAHA.107.703959.

    Article  PubMed  Google Scholar 

  5. Elsman P, van’t Hof AW, de Boer MJ, Hoorntje JC, Suryapranata H, Dambrink JH, et al. Role of collateral circulation in the acute phase of ST-segment-elevation myocardial infarction treated with primary coronary intervention. Eur Heart J. 2004;25:854–8. https://doi.org/10.1016/j.ehj.2004.03.005.

    Article  CAS  PubMed  Google Scholar 

  6. van der Laan AM, Piek JJ, van Royen N. Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol. 2009;6:515–23. https://doi.org/10.1038/nrcardio.2009.103.

    Article  PubMed  Google Scholar 

  7. Bonderman D, Teml A, Jakowitsch J, Adlbrecht C, Gyöngyösi M, Sperker W, et al. Coronary no-reflow is caused by shedding of active tissue factor from dissected atherosclerotic plaque. Blood. 2002;99:2794–800.

    Article  CAS  Google Scholar 

  8. Hirata K, Matsuda Y, Akita H, Yokoyama M, Fukuzaki H. Myocardial ischaemia induced by endothelin in the intact rabbit: angiographic analysis. Cardiovasc Res. 1990;24:879–83.

    Article  CAS  Google Scholar 

  9. Ma XL, Weyrich AS, Lefer DJ, Lefer AM. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res. 1993;72:403–12.

    Article  CAS  Google Scholar 

  10. Maxwell L, Gavin J. Anti-oxidant therapy improves microvascular ultrastructure and perfusion in postischemic myocardium. Microvasc Res. 1992;43:255–66.

    Article  CAS  Google Scholar 

  11. Maier W, Altwegg LA, Corti R, Gay S, Hersberger M, Maly FE, et al. Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: locally increased interleukin-6 and serum amyloid A but decreased C-reactive protein. Circulation. 2005;111:1355–61. https://doi.org/10.1161/01.CIR.0000158479.58589.0A.

    Article  CAS  PubMed  Google Scholar 

  12. Sheridan FM, Cole PG, Ramage D. Leukocyte adhesion to the coronary microvasculature during ischemia and reperfusion in an in vivo canine model. Circulation. 1996;93:1784–7.

    Article  CAS  Google Scholar 

  13. Kotani J, Nanto S, Mintz GS, Kitakaze M, Ohara T, Morozumi T, et al. Plaque gruel of atheromatous coronary lesion may contribute to the no reflow phenomenon in patients with acute coronary syndrome. Circulation. 2002;106:1672–7.

    Article  Google Scholar 

  14. Manciet LH, Poole DC, McDonagh PF, Copeland JG, Mathieu CO. Microvascular compression during myocardial ischemia: mechanistic basis for no-reflow phenomenon. Am J Phys. 1994;266:H1541–50. https://doi.org/10.1152/ajpheart.1994.266.4.H1541.

    Article  CAS  Google Scholar 

  15. Maxwell L, Gavin JB. The role of postischaemic reperfusion in the development of microvascular incompetence and ultrastructural damage in the myocardium. Basic Res Cardiol. 1991;86:544–53.

    Article  CAS  Google Scholar 

  16. Matsumura K, Jeremy RW, Schaper J, Becker LC. Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation. 1998;97:795–804.

    Article  CAS  Google Scholar 

  17. Reffelmann T, Kloner RA. Microvascular reperfusion injury: rapid expansion of anatomic no reflow during reperfusion in the rabbit. Am J Physiol Heart Circ Physiol. 2002;283:H1099–107. https://doi.org/10.1152/ajpheart.00270.2002.

    Article  CAS  PubMed  Google Scholar 

  18. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307. https://doi.org/10.1038/nature10144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simons M, Bonow RO, Chronos NA, Cohen DJ, Giordano FJ, Hammond HK, et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation. 2000;102:e73–86.

    Article  CAS  Google Scholar 

  20. Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Phys. 1997;273:H1255–65. https://doi.org/10.1152/ajpheart.1997.273.3.H1255.

    Article  CAS  Google Scholar 

  21. Gray C, Packham IM, Wurmser F, Eastley NC, Hellewell PG, Ingham PW, et al. Ischemia is not required for arteriogenesis in zebrafish embryos. Arterioscler Thromb Vasc Biol. 2007;27:2135–41. https://doi.org/10.1161/ATVBAHA.107.143990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai W, Vosschulte R, Afsah-Hedjri A, Koltai S, Kocsis E, Scholz D, et al. Altered balance between extracellular proteolysis and antiproteolysis is associated with adaptive coronary arteriogenesis. J Mol Cell Cardiol. 2000;32:997–1011.

    Article  CAS  Google Scholar 

  23. Cheng XW, Kuzuya M, Nakamura K, Maeda K, Tsuzuki M, Kim W, et al. Mechanisms underlying the impairment of ischemia-induced neovascularization in matrix metalloproteinase 2-deficient mice. Circ Res. 2007;100:904–13. https://doi.org/10.1161/01.RES.0000260801.12916.b5.

    Article  CAS  PubMed  Google Scholar 

  24. Scholz D, Schaper W. Preconditioning of arteriogenesis. Cardiovasc Res. 2005;65:513–23. https://doi.org/10.1016/j.cardiores.2004.10.032.

    Article  CAS  PubMed  Google Scholar 

  25. Perera D, Kanaganayagam GS, Saha M, Rashid R, Marber MS, Redwood SR. Coronary collaterals remain recruitable after percutaneous intervention. Circulation. 2007;115:2015–21. https://doi.org/10.1161/CIRCULATIONAHA.106.665257.

    Article  PubMed  Google Scholar 

  26. Zimarino M, Ausiello A, Contegiacomo G, Riccardi I, Renda G, Di Iorio C, et al. Rapid decline of collateral circulation increases susceptibility to myocardial ischemia: the trade-off of successful percutaneous recanalization of chronic total occlusions. J Am Coll Cardiol. 2006;48:59–65. https://doi.org/10.1016/j.jacc.2005.12.079.

    Article  PubMed  Google Scholar 

  27. Werner GS, Emig U, Mutschke O, Schwarz G, Bahrmann P, Figulla HR. Regression of collateral function after recanalization of chronic total coronary occlusions: a serial assessment by intracoronary pressure and Doppler recordings. Circulation. 2003;108:2877–82. https://doi.org/10.1161/01.CIR.0000100724.44398.01.

    Article  PubMed  Google Scholar 

  28. Heil M, Ziegelhoeffer T, Wagner S, Fernandez B, Helisch A, Martin S, et al. Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2. Circ Res. 2004;94:671–7. https://doi.org/10.1161/01.RES.0000122041.73808.B5.

    Article  CAS  PubMed  Google Scholar 

  29. Hoefer IE, van Royen N, Rectenwald JE, Deindl E, Hua J, Jost M, et al. Arteriogenesis proceeds via ICAM-1/Mac-1- mediated mechanisms. Circ Res. 2004;94:1179–85. https://doi.org/10.1161/01.RES.0000126922.18222.F0.

    Article  CAS  PubMed  Google Scholar 

  30. Grundmann S, Hoefer I, Ulusans S, van Royen N, Schirmer SH, Ozaki CK, et al. Anti-tumor necrosis factor-{alpha} therapies attenuate adaptive arteriogenesis in the rabbit. Am J Phys. 2005;289:H1497–505. https://doi.org/10.1152/ajpheart.00959.2004.

    Article  CAS  Google Scholar 

  31. van Royen N, Voskuil M, Hoefer I, Jost M, de Graaf S, Hedwig F, et al. CD44 regulates arteriogenesis in mice and is differentially expressed in patients with poor and good collateralization. Circulation. 2004;109:1647–52. https://doi.org/10.1161/01.CIR.0000124066.35200.18.

    Article  CAS  PubMed  Google Scholar 

  32. Stabile E, Kinnaird T, la Sala A, Hanson SK, Watkins C, Campia U, et al. CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of interleukin-16. Circulation. 2006;113:118–24. https://doi.org/10.1161/CIRCULATIONAHA.105.576702.

    Article  PubMed  Google Scholar 

  33. Carr AN, Howard BW, Yang HT, Eby-Wilkens E, Loos P, Varbanov A, et al. Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency: support for an endothelium-dependent mechanism. Cardiovasc Res. 2006;69:925–35. https://doi.org/10.1016/j.cardiores.2005.12.005.

    Article  CAS  PubMed  Google Scholar 

  34. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84. https://doi.org/10.1038/nm0603-677.

    Article  CAS  PubMed  Google Scholar 

  35. Bhargava M, Joseph A, Knesel J, Halaban R, Li Y, Pang S, et al. Scatter factor and hepatocyte growth factor: activities, properties, and mechanism. Cell Growth Differ. 1992;3:11–20.

    CAS  PubMed  Google Scholar 

  36. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76. https://doi.org/10.1038/nm0603-669.

    Article  CAS  PubMed  Google Scholar 

  37. Pearlman JD, Hibberd MG, Chuang ML, Harada K, Lopez JJ, Gladstone SR, et al. Magnetic resonance mapping demonstrates benefits of VEGF induced myocardial angiogenesis. NatMed. 1995;1:1085–9.

    CAS  Google Scholar 

  38. Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH, et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat-angiogenesis and angioma formation. J Am Coll Cardiol. 2000;35:1323–30.

    Article  CAS  Google Scholar 

  39. Kranz A, Rau C, Kochs M, Waltenberger J. Elevation of vascular endothelial growth factor A serum levels following acute myocardial infarction. Evidence for its origin and functional significance. J Mol Cell Cardiol. 2000;32:65–72. https://doi.org/10.1006/jmcc.1999.1062.

    Article  CAS  PubMed  Google Scholar 

  40. Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature. 2008;456:809–13. https://doi.org/10.1038/nature07424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Silvestre JS, Tamarat R, Ebrahimian TG, Le-Roux A, Clergue M, Emmanuel F, et al. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res. 2003;93:114–23. https://doi.org/10.1161/01.RES.0000081594.21764.44.

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Tjwa M, Van Hove I, Enholm B, Neven E, Paavonen K, et al. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler Thromb Vasc Biol. 2008;28:1614–20. https://doi.org/10.1161/ATVBAHA.107.158725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bry M, Kivela R, Holopainen T, Anisimov A, Tammela T, Soronen J, et al. Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation. 2010;122:1725–33. https://doi.org/10.1161/CIRCULATIONAHA.110.957332.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch AW, et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci U S A. 2009;106:6152–7. https://doi.org/10.1073/pnas.0813061106.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, et al. Vascular endothelial growth factor-C (VEGF-C/ VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol. 1998;153:381–94. https://doi.org/10.1016/S0002-9440(10)65582-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Onimaru M, Yonemitsu Y, Fujii T, Tanii M, Nakano T, Nakagawa K, et al. VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol. 2009;297:H1685–96. https://doi.org/10.1152/ajpheart.00015.2009.

    Article  CAS  PubMed  Google Scholar 

  47. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI, et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses, Circ. Res. 2003;92:1098–106. https://doi.org/10.1161/01.RES.0000073584.46059.E3.

    Article  CAS  Google Scholar 

  48. Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med. 2003;9:936–43. https://doi.org/10.1038/nm884.

    Article  CAS  PubMed  Google Scholar 

  49. Carmeliet P. Fibroblast growth factor1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ Res. 2000;87:176–8.

    Article  CAS  Google Scholar 

  50. Safi J Jr, DiPaula AF Jr, Riccioni T, Kajstura J, Ambrosio G, Becker LC, et al. Adenovirus mediated acidic fibroblast growth factor gene transfer induces angiogenesis in the nonischemic rabbit heart. Microvasc Res. 1999;58:238–49. https://doi.org/10.1006/mvre.1999.2165.

    Article  CAS  PubMed  Google Scholar 

  51. Banai S, Jaklitsch MT, Casscells W, Shou M, Shrivastav S, Correa R, et al. Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ Res. 1991;69:76–85.

    Article  CAS  Google Scholar 

  52. Watanabe E, Smith DM, Sun J, Smart D, Delcarpio JB, Roberts TB, et al. Effect of basic fibroblast growth factor on angiogenesis in the infracted porcine heart. Basic Res Cardiol. 1998;93:30–7.

    Article  CAS  Google Scholar 

  53. Scheinowitz M, Kotlyar AA, Zimand S, Leibovitz I, Varda-Bloom N, Ohad D, et al. Effect of basic fibroblast growth factor on left ventricular geometry in rats subjected to coronary occlusion and reperfusion. Isr Med Assoc J. 2002;4:109–13.

    CAS  PubMed  Google Scholar 

  54. Horrigan MC, MacIsaac AI, Nicolini FA, Vince DG, Lee P, Ellis SG, et al. Reduction in myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model. Circulation. 1996;94:1927–33.

    Article  CAS  Google Scholar 

  55. Lu H, Xu X, Zhang M, Cao R, Bråkenhielm E, Li C, et al. Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proc Natl Acad Sci U S A. 2007;104:12140–5. https://doi.org/10.1073/pnas.0704966104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med. 2003;9:604–13. https://doi.org/10.1038/nm848.

    Article  CAS  PubMed  Google Scholar 

  57. Fukuyama N, Tanaka E, Tabata Y, Fujikura H, Hagihara M, Sakamoto H, et al. Intravenous injection of phagocytes transfected ex vivo with FGF4 DNA/biodegradable gelatin complex promotes angiogenesis in a rat myocardial ischemia/ reperfusion injury model. Basic Res Cardiol. 2007;102:209–16. https://doi.org/10.1007/s00395-006-0629-9.

    Article  CAS  PubMed  Google Scholar 

  58. Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH, et al. Intracoronary gene transfer of fibroblast growth factor- 5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med. 1996;2:534–9.

    Article  CAS  Google Scholar 

  59. Frontini MJ, Nong Z, Gros R, Drangova M, O’Neil C, Rahman MN, et al. Fibroblast growth factor 9 delivery during angiogenesis produces durable, vasoresponsive microvessels wrapped by smooth muscle cells. Nat Biotechnol. 2011;29:421–7. https://doi.org/10.1038/nbt.1845.

    Article  CAS  PubMed  Google Scholar 

  60. Chen XH, Minatoguchi S, Kosai K, Yuge K, Takahashi T, Arai M, et al. In vivo hepatocyte growth factor gene transfer reduces myocardial ischemia–reperfusion injury through its multiple actions. J Card Fail. 2007;13:874–83. https://doi.org/10.1016/j.cardfail.2007.07.004.

    Article  CAS  PubMed  Google Scholar 

  61. Saeed M, Martin A, Ursell P, Do L, Bucknor M, Higgins CB, et al. MR assessment of myocardial perfusion, viability, and function after intramyocardial transfer of vM202, a new plasmid human hepatocyte growth factor in ischemic swine myocardium. Radiology. 2008;249:107–18. https://doi.org/10.1148/radiol.2483071579.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pannitteri G, Petrucci E, Testa U. Coordinate release of angiogenic growth factors after acute myocardial infarction: evidence of a two wave production. J Cardiovasc Med. 2006;7:872–9. https://doi.org/10.2459/01.JCM.0000253831.61974.b9.

    Article  Google Scholar 

  63. Yasuda S, Goto Y, Baba T, Satoh T, Sumida H, Miyazaki S, et al. Enhanced secretion of cardiac hepatocyte growth factor from an infarct regionis associated with less severe ventricular enlargement and improved cardiac function. J Am Coll Cardiol. 2000;36:115–21.

    Article  CAS  Google Scholar 

  64. Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, et al. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol. 2002;283:H2411–9. https://doi.org/10.1152/ajpheart.01098.2001.

    Article  CAS  PubMed  Google Scholar 

  65. Arras M, ItoWD SD, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest. 1998;101:40–50. https://doi.org/10.1172/JCI119877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ribatti D. The paracrine role of Tie-2-expressing monocytes in tumor angiogenesis. Stem Cells Dev. 2009;18:703–6. https://doi.org/10.1089/scd.2008.0385.

    Article  CAS  PubMed  Google Scholar 

  67. Fernandez-Pujol B, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, et al. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation. 2000;65:287–300.

    Article  CAS  Google Scholar 

  68. Arderiu G, Espinosa S, Peña E, Crespo J, Aledo R, Bogdanov VY, et al. Tissue factor variants induce monocyte transformation and transdifferentiation into endothelial cell-like cells. J Thromb Haemost. 2017;8:1689–703. https://doi.org/10.1111/jth.13751.

    Article  Google Scholar 

  69. Arderiu G, Espinosa S, Pena E, Aledo R, Badimon L. Monocyte-secreted Wnt5a interacts with FZD5 in microvascular endothelial cells and induces angiogenesis through tissue factor signaling. J Mol Cell Biol. 2014;6:380–93. https://doi.org/10.1093/jmcb/mju036.

    Article  CAS  PubMed  Google Scholar 

  70. Yan D, Wang X, Li D, Liu W, Li M, Qu Z, et al. Macrophages overexpressing VEGF target to infarcted myocardium and improve neovascularization and cardiac function. Int J Cardiol. 2011;164:334–8. https://doi.org/10.1016/j.ijcard.2011.07.026.

    Article  PubMed  Google Scholar 

  71. Takeda Y, Costa S, Delamarre E, Roncal C, Leite de Oliveira R, Squadrito ML, et al. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature. 2011;479:122–6. https://doi.org/10.1038/nature10507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Melero-Martin JM, De Obaldia ME, Allen P, Dudley AC, Klagsbrun M, Bischoff J. Host myeloid cells are necessary for creating bioengineered human vascular networks in vivo. Tissue Eng Part A. 2010;16:2457–66. https://doi.org/10.1089/ten.TEA.2010.0024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Capoccia BJ, Gregory AD, Link DC. Recruitment of the inflammatory subset of monocytes to sites of ischemia induces angiogenesis in a monocyte chemoattractant protein-1-dependent fashion. J Leukoc Biol. 2008;84:760–8. https://doi.org/10.1189/jlb.1107756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gregory AD, Capoccia BJ, Woloszynek JR, Link DC. Systemic levels of G-CSF and interleukin-6 determine the angiogenic potential of bone marrow resident monocytes. J Leukoc Biol. 2010;88:123–31. https://doi.org/10.1189/jlb.0709499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van Weel V, de Vries M, Voshol PJ, Verloop RE, Eilers PH, van Hinsbergh VW, et al. Hypercholesterolemia reduces collateral artery growth more dominantly than hyperglycemia or insulin resistance in mice. Arterioscler Thromb Vasc Biol. 2006;26:1383–90. https://doi.org/10.1161/01.ATV.0000219234.78165.85.

    Article  CAS  PubMed  Google Scholar 

  76. Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21. https://doi.org/10.1056/NEJMoa060186.

    Article  PubMed  Google Scholar 

  77. Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306:2110–9. https://doi.org/10.1001/jama.2011.1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199–209. https://doi.org/10.1056/NEJMoa055706.

    Article  CAS  PubMed  Google Scholar 

  79. Kawamoto A, Iwasaki H, Kusano K, Murayama T, Oyamada A, Silver M, et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation. 2006;114:2163–9. https://doi.org/10.1161/CIRCULATIONAHA.106.644518.

    Article  PubMed  Google Scholar 

  80. Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation. 2002;105(6):732–8.

    Article  CAS  Google Scholar 

  81. Schächinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol. 2004;44(8):1690–9. https://doi.org/10.1016/j.jacc.2004.08.014.

    Article  PubMed  Google Scholar 

  82. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94. https://doi.org/10.1161/CIRCULATIONAHA.105.575118.

    Article  PubMed  Google Scholar 

  83. Quyyumi AA, Vasquez A, Kereiakes DJ, Klapholz M, Schaer GL, Abdel-Latif A, et al. PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res. 2017;120(2):324–31. https://doi.org/10.1161/CIRCRESAHA.115.308165.

    Article  CAS  PubMed  Google Scholar 

  84. Beitnes JO, Gjesdal O, Lunde K, Solheim S, Edvardsen T, Arnesen H, et al. Left ventricular systolic and diastolic function improve after acute myocardial infarction treated with acute percutaneous coronary intervention, but are not influenced by intracoronary injection of autologous mononuclear bone marrow cells: a 3 year serial echocardiographic sub-study of the randomized-controlled ASTAMI study. Eur J Echocardiogr. 2011;12:98–106. https://doi.org/10.1093/ejechocard/jeq116.

    Article  PubMed  Google Scholar 

  85. Tendera M, Wojakowski W, Ruzyłło W, Chojnowska L, Kepka C, Tracz W, et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J. 2009;30:1313–21. https://doi.org/10.1093/eurheartj/ehp073.

    Article  PubMed  Google Scholar 

  86. Steinhoff G, Nesteruk J, Wolfien M, Kundt G, PERFECT Trial Investigators Group, Börgermann J, et al. Cardiac function improvement and bone marrow response -: outcome analysis of the randomized PERFECT phase III clinical trial of intramyocardial CD133+ application after myocardial infarction. EBioMedicine. 2017;22:208–24. https://doi.org/10.1016/j.ebiom.2017.07.022.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jiang M, He B, Zhang Q, Ge H, Zang MH, Han ZH, et al. Randomized controlled trials on the therapeutic effects of adult progenitor cells for myocardial infarction: meta-analysis. Expert Opin Biol Ther. 2010;10(5):667–80. https://doi.org/10.1517/14712591003716437.

    Article  CAS  PubMed  Google Scholar 

  88. Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, Dawn B. Adult bone marrow cell therapy improves survival and induces long- term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012;126(5):551–68. https://doi.org/10.1161/CIRCULATIONAHA.111.086074.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Foubert P, Matrone G, Souttou B, Leré-Déan C, Barateau V, Plouët J, et al. Coadministration of endothelial and smooth muscle progenitor cells enhances the efficiency of proangiogenic cell-based therapy. Circ Res. 2008;103:751–60. https://doi.org/10.1161/CIRCRESAHA.108.175083.

    Article  CAS  PubMed  Google Scholar 

  90. Vilahur G, Oñate B, Cubedo J, Béjar MT, Arderiu G, Peña E, et al. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther. 2017;1:52. https://doi.org/10.1186/s13287-017-0509-2.

    Article  CAS  Google Scholar 

Download references

Disclosures and Funding typos are different from Conclusions and References typo

None.

Funding

 This work was supported by the Spanish Ministry of Economy and Competition and FEDER funds [SAF2016-76819-R to L.B. and SAF2015-71653-R to G.V.]; the Instituto de Salud Carlos III [CIBERCV CN16/11/00411 to L.B., TERCEL RD16/0011/018 to L.B. and FIS2016-02014 to M.B.P.]; the Generalitat of Catalunya-Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat [2014SGR1303 to L.B.]; the Fundacion Investigación Cardiovascular to L.B.; and the Spanish Society of Cardiology [SEC2015 to M.B.P.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Badimon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badimon, L., Vilahur, G., Borrell-Pages, M. (2020). Proangiogenic and Proarteriogenic Therapies in Coronary Microvasculature Dysfunction. In: Dorobantu, M., Badimon, L. (eds) Microcirculation. Springer, Cham. https://doi.org/10.1007/978-3-030-28199-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28199-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28198-4

  • Online ISBN: 978-3-030-28199-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics