Skip to main content

Regulation of Antiviral Innate Immunity Through APOBEC Ribonucleoprotein Complexes

  • Chapter
  • First Online:
Macromolecular Protein Complexes II: Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 93))

Abstract

The DNA mutagenic enzyme known as APOBEC3G (A3G) plays a critical role in innate immunity to Human Immunodeficiency Virus-1 (HIV-1 ). A3G is a zinc-dependent enzyme that mutates select deoxycytidines (dC) to deoxyuridine (dU) through deamination within nascent single stranded DNA (ssDNA) during HIV reverse transcription. This activity requires that the enzyme be delivered to viral replication complexes by redistributing from the cytoplasm of infected cells to budding virions through what appears to be an RNA-dependent process. Once inside infected cells, A3G must bind to nascent ssDNA reverse transcripts for dC to dU base modification gene editing. In this chapter we will discuss data indicating that ssDNA deaminase activity of A3G is regulated by RNA binding to A3G and ribonucleoprotein complex formation along with evidence suggesting that RNA-selective interactions with A3G are temporally and mechanistically important in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A3:

Collectively all APOBEC3 proteins, A3A, A3B, A3C, A3D, A3F, A3G, A3H

AID :

Activation induced deaminase

APOBEC :

Apolipoprotein B editing catalytic unit

CD1:

N-terminal domain of dual domain APOBEC proteins

CD2:

C-terminal domain of dual domain APOBEC proteins

CLIP-Seq:

Crosslinking immunoprecipitation and sequencing of RNA bound to proteins

gRNA:

HIV genomic RNA

HIV:

Human immunodeficiency virus

hY:

Human Y ncRNA

NC:

Nucleocapsid portion of HIV Gag

ncRNA:

Noncoding RNA

RNP:

Ribonucleoprotein particle

RT:

Reverse transcriptase

RNA-Seq:

RNA sequencing

ssDNA:

Single stranded DNA

ZBD:

Zinc binding domain

References

  • Adolf MB, Webb J, Chelico L (2013) Retroviral Restriction Factor APOBEC3G Delays the Initiation of DNA Snythesis by HIV-1 Reverse Transcriptase. PLoS ONE 8:e64196

    Google Scholar 

  • Aydin H, Taylor MW, Lee JE (2014) Structure-guided analysis of the human APOBEC3-HIV restrictome. Structure 22:668–684

    Article  CAS  PubMed  Google Scholar 

  • Bach D, Peddi S, Mangeat B, Lakkaraju A, Strub K, Trono D (2008) Characterization of APOBEC3G binding to 7SL1 RNA. Retrovirology 5:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett RP, Stewart RA, Hogan PA, Ptak RG, Mankowski MK, Hartman TL, Buckheit RW Jr, Snyder BA, Salter JD, Morales GA et al (2016) An analog of camptothecin inactive against Topoisomerase I is broadly neutralizing of HIV-1 through inhibition of Vif-dependent APOBEC3G degradation. Antiviral Res 136:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett RP (2007) A functional analysis of the domains of APOBEC3G involved in dimerization, Antiviral activity and cellular localization. University of Rochester School of Medicine and Dentistry, Department of Biochemistry and Biophysics. Ph.D. thesis Chapter 2, pp 48–90. Proquest ID # 304818534

    Google Scholar 

  • Bohn JA, Thummar K, York A, Raymond A, Brown WC, Bieniasz PD, Hatziioannou T, Smith JL (2017) APOBEC3H structure reveals an unusual mechanism of interaction with duplex RNA. Nat Commun 8:1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulliard Y, Turelli P, Rohrig UF, Zoete V, Mangeat B, Michielin O, Trono D (2009) Functional analysis and structural modeling of human APOBEC3G reveal the role of evolutionarily conserved elements in the inhibition of human immunodeficiency virus type 1 infection and Alu transposition. J Virology 83:12611–12621

    Article  CAS  PubMed  Google Scholar 

  • Burnett A, Spearman P (2007) APOBEC3G multimers are recruited to the plasma membrane for packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent process requiring the NC basic linker. J Virology 81:5000–5013

    Article  CAS  PubMed  Google Scholar 

  • Bélanger K, Langlois MA (2015) RNA-binding residues in the N-terminus of APOBEC3G influence its DNA sequence specificity and retrovirus restriction efficiency. Virology 483:141–148

    Article  CAS  PubMed  Google Scholar 

  • Bélanger K, Savoie M, Rosales Gerpe MC, Couture JF, Langlois MA (2013) Binding of RNA by APOBEC3G controls deamination-independent restriction of retroviruses. Nucleic Acids Res 41:7438–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadena C, Stavrou S, Manzoni T, Iyer SS, Bibollet-Ruche F, Zhang, W, Hahn BH, Browne EP, Ross SR (2016) The effect of HIV-1 Vif polymorphisms on A3G anti-1 viral activity in an in vivo mouse model. Retrovirology. (In Press)

    Google Scholar 

  • Caval V, Bouzidi MS, Suspène R, Laude H, Dumargne MC, Bashamboo A, Krey T, Vartanian JP, Wain-Hobson S (2015) Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme. Nucleic Acids Res 43:9340–9349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cen S, Guo F, Niu M, Saadatmand J, Deflassieux J, Kleiman L (2004) The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem 279:33177–33184

    Google Scholar 

  • Chaurasiya KR, McCauley MJ, Wang W, Qualley DF, Wu T, Kitamura S, Geertsema H, Chan DS, Hertz A, Iwatani Y, Levin JG, Musier-Forsyth K, Rouzina I, Williams MC (2014) Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein. Nat Chem 6:28–33

    Article  CAS  PubMed  Google Scholar 

  • Chelico L, Prochnow C, Erie DA, Chen XS, Goodman MF (2010) Structural model for deoxycytidine deamination mechanisms of the HIV-1 inactivation enzyme APOBEC3G. J Biol Chem 285:16195–16205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelico L, Sacho EJ, Erie DA, Goodman MF (2008) A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J Biol Chem 283:13780–13791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS (2005) Evolution of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases. Molecular Biol Evolution 22:367–377

    Article  CAS  Google Scholar 

  • Devos JM, Tomanicek SJ, Jones CE, Nossal NG, Mueser TC (2007) Crystal structure of bacteriophage T4 5′ nuclease in complex with a branched DNA reveals how flap endonuclease-1 family nucleases bind their substrates. J Biol Chem 282:31713–31724

    Article  CAS  PubMed  Google Scholar 

  • Drake JWaH, JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913

    Google Scholar 

  • Eckwahl MJ, Arnion H, Kharytonchyk S, Zang T, Bieniasz PD, Telesnitsky A, Wolin SL (2016) Analysis of the human immunodeficiency virus-1 RNA packageome. RNA 22:1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckwahl MJ, Sim S, Smith D, Telesnitsky A, Wolin SL (2015) A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway. Genes Dev 29:646–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esnault C, Heidmann O, Delebecque F, Dewannieux M, Ribet D, Hance AJ, Heidmann T, Schwartz O (2005) APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433:430–433

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Xiao X, Li SX, Wolfe A, Chen XS (2018) Molecular interactions of a dna modifying enzyme APOBEC3F catalytic domain with a single-stranded DNA. J Mol Biol 430:87–101

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Chelico L (2011) Intensity of deoxycytidine deamination of HIV-1 proviral DNA by the retroviral restriction factor APOBEC3G is mediated by the noncatalytic domain. J Biol Chem 286:11415–11426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Wong L, Morse M, Rouzina I, Williams MC, Chelico L (2018) RNA-mediated dimerization of the human deoxycytidine deaminase APOBEC3H influences enzyme activity and interaction with nucleic acids. J Mol Biol 430:4891–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fourati S, Malet I, Binka M, Boukobza S, Wirden M, Sayon S, Simon A, Katlama C, Simon V, Calvez V et al (2010) Partially active HIV-1 Vif alleles facilitate viral escape from specific antiretrovirals. Aids 24:2313–2321

    CAS  PubMed  Google Scholar 

  • Friew YN, Boyko V, Hu WS, Pathak VK (2009) Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA. Retrovirology 6:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda H, Songling L, Sardo, L, Smith JL, Yamashita K, Sarca AD, Shirakawa K, Standley DM, Takaori-Kondo A, Izumi T (2019) Structural Determinants of the APOBEC3G N-Terminal Domain for HIV-1 RNA Association. Frontiers in Cellular and Infection Microbiology 9

    Google Scholar 

  • Gallois-Montbrun S, Holmes RK, Swanson CM, Fernandez-Ocana M, Byers HL, Ward MA, Malim MH (2008) Comparison of cellular ribonucleoprotein complexes associated with the APOBEC3F and APOBEC3G antiviral proteins. J Virol 82:5636–5642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S, Ward M, Malim MH (2007) Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virology 81:2165–2178

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Dong L, Qiu X, Wang Y, Zhang B, Liu H, Yu Y, Zang Y, Yang M, Huang Z (2014) Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505:229–233

    Article  CAS  PubMed  Google Scholar 

  • Harris RS, Dudley JP (2015) APOBECs and virus restriction. Virology (479–480):131–145

    Google Scholar 

  • Huthoff H, Autore F, Gallois-Montbrun S, Fraternali F, Malim MH (2009) RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog 5:e1000330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huthoff H, Malim MH (2007) Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation. J Virology 81:3807–3815

    Article  CAS  PubMed  Google Scholar 

  • Itano MS, Arnion H, Wolin SL, Simon SM (2018) Recruitment of 7SL1 RNA to assembling HIV-1 virus-like particles. Traffic. 19:36–43

    Article  CAS  PubMed  Google Scholar 

  • Ito F, Yang H, Xiao X, Li SX, Wolfe A, Zirkle B, Arutiunian V, Chen XS (2018) Understanding the structure, multimerization, subcellular localization and mC selectivity of a genomic mutator and anti-HIV factor APOBEC3H. Sci Rep 8:3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwatani Y, Chan DS, Wang F, Maynard KS, Sugiura W, Gronenborn AM, Rouzina I, Williams MC, Musier-Forsyth K, Levin JG (2007) Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 35:7096–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwatani Y, Takeuchi H, Strebel K, Levin JG (2006) Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J Virology 80:5992–6002

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Sci (New York, NY) 351:867–871

    Article  CAS  Google Scholar 

  • Jin X, Brooks A, Chen H, Bennett R, Reichman R, Smith H (2005) APOBEC3G/CEM15 (hA3G) mRNA levels associate inversely with human immunodeficiency virus viremia. J Virology 79:11513–11516

    Article  CAS  PubMed  Google Scholar 

  • Keene SE, Telesnitsky A (2012) cis-Acting determinants of 7SL1 RNA packaging by HIV-1. J Virology 86:7934–7942

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Goila-Gaur R, Kao S, Miyagi E, Walker RC Jr, Strebel K (2009) Encapsidation of APOBEC3G into HIV-1 virions involves lipid raft association and does not correlate with APOBEC3G oligomerization. Retrovirology 6:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Goila-Gaur R, Opi S, Miyagi E, Takeuchi H, Kao S, Strebel K (2007) Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology 4:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Kao S, Miyagi E, Takeuchi H, Goila-Gaur R, Opi S, Gipson CL, Parslow TG, Ly H, Strebel K (2005) Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J Virol 79:5870–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi T, Iwabu Y, Tada T, Kawana-Tachikawa A, Koga M, Hosoya N, Nomura S, Brumme ZL, Jessen H, Pereyra F et al (2015) Anti-APOBEC3G activity of HIV-1 Vif protein is attenuated in elite controllers. J Virol 89:4992–5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EY, Bhattacharya T, Kunstman K, Swantek P, Koning FA, Malim MH, Wolinsky SM (2010) Human APOBEC3G-mediated editing can promote HIV-1 sequence diversification and accelerate adaptation to selective pressure. J Virology 84:10402–10405

    Article  CAS  PubMed  Google Scholar 

  • Kouno T, Luengas EM, Shigematsu M, Shandilya SM, Zhang J, Chen L, Hara M, Schiffer CA, Harris RS, Matsuo H (2015) Structure of the Vif-binding domain of the antiviral enzyme APOBEC3G. Nature Struct Molecular Biol 22:485–491

    Article  CAS  Google Scholar 

  • Kouno T, Silvas TV, Hilbert BJ, Shandilya SMD, Bohn MF, Kelch BA, Royer WE, Somasundaran M, Kurt Yilmaz N, Matsuo H, Schiffer CA (2017) Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nat Commun 8:15024

    Article  PubMed  PubMed Central  Google Scholar 

  • Kourteva Y, De Pasquale M, Allos T, McMunn C, D’Aquila RT (2012) APOBEC3G expression and hypermutation are inversely associated with human immunodeficiency virus type 1 (HIV-1) burden in vivo. Virology 430:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D (2006) The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 281:29105–29119

    Article  CAS  PubMed  Google Scholar 

  • Kreisberg JF, Yonemoto W, Greene WC (2006) Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J Exp Med 203:865–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krisko JF, Martinez-Torres F, Foster JL, Garcia JV (2013) HIV restriction by APOBEC3 in humanized mice. PLoS Pathog 9:e1003242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupp A, McCarthy KR, Ooms M, Letko M, Morgan JS, Simon V, Johnson WE (2013) APOBEC3G polymorphism as a selective barrier to cross-species transmission and emergence of pathogenic SIV and AIDS in a primate host. PLoS Pathog 9:e1003641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutluay SB, Zang T, Blanco-Melo D, Powell C, Jannain D, Errando M, Bieniasz PD (2014) Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis. Cell 159:1096–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacMillan AL, Kohli RM, Ross SR (2013) APOBEC3 inhibition of mouse mammary tumor virus infection: the role of cytidine deamination versus inhibition of reverse transcription. J Virology 87:4808–4817

    Article  CAS  PubMed  Google Scholar 

  • Maiti A, Myint W, Kanai T, Delviks-Frankenberry K, Sierra Rodriguez C, Pathak VK, Schiffer CA, Matsuo H (2018) Crystal structure of the catalytic domain of HIV-1 restriction factor APOBEC3G in complex with ssDNA. Nat Commun 9:2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansky LMaT HM (1995) Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69:5087–5094

    Google Scholar 

  • Matsuoka T, Nagae T, Ode H, Awazu H, Kurosawa T, Hamano A, Matsuoka K, Hachiya A, Imahashi M, Yokomaku Y et al (2018) Structural basis of chimpanzee APOBEC3H dimerization stabilized by double-stranded RNA. Nucleic Acids Res 46:10368–10379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDougall WM, Okany C, Smith HC (2011) Deaminase activity on single-stranded DNA (ssDNA) occurs in vitro when APOBEC3G cytidine deaminase forms homotetramers and higher-order complexes. J Biol Chem 286:30655–30661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDougall WM, Smith HC (2011) RNA-Dependent inhibition of APOBEC3G ssDNA cytidine deaminase activity. Biochem Biophys Res Commun 412:612–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morse M, Huo R, Feng Y, Rouzina I, Chelico L, Williams MC (2017) Dimerization regulates both deaminase-dependent and deaminase-independent HIV-1 restriction by APOBEC3G. Nat Commun. 8:597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munk C, Willemsen A, Bravo IG (2012) An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol Biol 12:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muriaux D, Darlix JL (2010) Properties and functions of the nucleocapsid protein in virus assembly. RNA Biol 7:744–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro F, Bollman B, Chen H, Konig R, Yu Q, Chiles K, Landau NR (2005) Complementary function of the two catalytic domains of APOBEC3G. Virology 333:374–386

    Article  CAS  PubMed  Google Scholar 

  • Okeoma CM, Lovsin N, Peterlin BM, Ross SR (2007) APOBEC3 inhibits mouse mammary tumour virus replication in vivo. Nature 445:927–930

    Article  CAS  PubMed  Google Scholar 

  • Ooms MBB, Letko M, Maio SM, Pilcher CD, Hecht FM, Barbour JD, Simon V (2013) HIV-1 Vif adaptation to human APOBEC3H haplotypes. Cell Host Microbe 14:411–421

    Article  CAS  PubMed  Google Scholar 

  • Opi S, Takeuchi H, Kao S, Khan MA, Miyagi E, Goila-Gaur R, Iwatani Y, Levin JG, Strebel K (2006) Monomeric APOBEC3G is catalytically active and has antiviral activity. J Virol 80:4673–4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Sun Z, Maiti A, Kanai T, Matsuo H, Li M, Harris RS, Shlyakhtenko LS, Lyubchenko YL (2016) Nanoscale characterization of interaction of APOBEC3G with RNA. Biochemistry

    Google Scholar 

  • De Pasquale M, Kourteva Y, Allos T, D’Aquila RT (2013) Lower HIV provirus levels are associated with more APOBEC3G protein in blood resting memory CD4+T lymphocytes of controllers in vivo. PLoS ONE 8:e76002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng G, Greenwell-Wild T, Nares S, Jin W, Lei KJ, Rangel ZG, Munson PJ, Wahl SM (2007) Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 110:393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pery E, Sheehy A, Nebane NM, Brazier AJ, Misra V, Rajendran KS, Buhrlage SJ, Mankowski MK, Rasmussen L, White EL et al (2015) Identification of a novel HIV-1 inhibitor targeting Vif-dependent degradation of human APOBEC3G protein. J Biol Chem 290:10504–10517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polevoda B, Joseph R, Friedman AE, Bennett RP, Greiner R, De Zoysa T, Stewart RA, Smith HC (2017) DNA mutagenic activity and capacity for HIV-1 restriction of the cytidine deaminase APOBEC3G depend on whether DNA or RNA binds to tyrosine 315. J Biol Chem 292:8642–8656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polevoda B, McDougall WM, Bennett RP, Salter JD, Smith HC (2016) Structural and functional assessment of APOBEC3G macromolecular complexes. Methods 107:10–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polevoda B, McDougall WM, Tun BN, Cheung M, Salter JD, Friedman AE, Smith HC (2015) RNA binding to APOBEC3G induces the disassembly of functional deaminase complexes by displacing single-stranded DNA substrates. Nucleic Acids Res 43:9434–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poropatich KaS, DJ, Jr (2011) Human immunodeficiency virus type 1 long-term non-progressors: the viral, genetic and immunological basis for disease non-progression. J General Virology 92:247–268

    Google Scholar 

  • Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H (2017) AID recognizes structured DNA for class switch recombination. Mol Cell 67:361–373.e364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangel HR, Garzaro D, Rodriguez AK, Ramirez AH, Ameli G, Del Rosario Gutierrez C, Pujol FH (2009) Deletion, insertion and stop codon mutations in vif genes of HIV-1 infecting slow progressor patients. J Infect Dev Ctries 3:531–538

    Article  CAS  PubMed  Google Scholar 

  • Reddy K, Ooms M, Letko M, Garrett N, Simon V, Ndung’u T (2016) Functional characterization of Vif proteins from HIV-1 infected patients with different APOBEC3G haplotypes. Aids

    Google Scholar 

  • Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL, Harris RS (2010) Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res 38:4274–4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadler HA, Stenglein MD, Harris RS, Mansky LM (2010) APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis. J Virology 84:7396–7404

    Article  CAS  PubMed  Google Scholar 

  • Salter et al (2014a) Structural insights for HIV-1therapeutic strategies targeting Vif. Trends Biochem Sci 39:373–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter JD, Bennett RP, Smith HC (2016) The APOBEC protein family: united by structure, divergent in function. Trends Biochem Sci 41:578–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter JD, Morales GA, Smith HC (2014b) Structural insights for HIV-1 therapeutic strategies targeting Vif. Trends Biochem Sci 39:373–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter JD, Smith HC (2018) Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands. Trends in Biochem Sci 43:606–622

    Article  CAS  Google Scholar 

  • Sato K, Izumi T, Misawa N, Kobayashi T, Yamashita Y, Ohmichi M, Ito M, Takaori-Kondo A, Koyanagi Y (2010) Remarkable lethal G-to-A mutations in vif-proficient HIV-1 provirus by individual APOBEC3 proteins in humanized mice. J Virology 84:9546–9556

    Article  CAS  PubMed  Google Scholar 

  • Sawyer SL, Emerman M, Malik HS (2004) Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2:E275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Schwedler U, Song J, Aiken C, Trono D (1993) Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virology 67:4945–4955

    Article  Google Scholar 

  • Shaban NM, Shi K, Lauer KV, Carpenter MA, Richards CM, Salamango D, Wang J, Lopresti MW, Banerjee S, Levin-Klein R, Brown WL, Aihara H, Harris RS (2018) The antiviral and cancer genomic DNA deaminase APOBEC3H is regulated by an RNA-Mediated dimerization mechanism. Mol Cell 69:75–86

    Article  CAS  PubMed  Google Scholar 

  • Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650

    Article  CAS  PubMed  Google Scholar 

  • Shi K, Carpenter MA, Kurahashi K, Harris RS, Aihara H (2015) Crystal structure of the DNA deaminase APOBEC3B catalytic domain. J Biol Chem 290:28120–28130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi K, Demir Ö, Carpenter MA, Wagner J, Kurahashi K, Harris RS, Amaro RE, Aihara H (2017) Conformational switch regulates the DNA cytosine deaminase activity of human APOBEC3B. Sci Rep 7:17415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi K, Carpenter, MA, Banerjee, S, Shaban, NM, Kurahashi, K1, Salamango, DJ, McCann, JL, Starrett, GJ, Duffy, JV, Demir, Ö, Amaro, RE, Harki, DA, Harris, RS, Aihara, H (2017a) Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nature Struct Molecular Biol 24:131–139

    Google Scholar 

  • Simon V, Zennou V, Murray D, Huang Y, Ho DD, Bieniasz PD (2005) Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog 1:e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon VBN, Landau NR (2015) Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 16:546–553

    Google Scholar 

  • Siu KK, Sultana A, Azimi FC, Lee JE (2013) Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F. Nat Commun 4:2593

    Google Scholar 

  • Smith HC (2011) APOBEC3G: a double agent in defense. Trends Biochem Sci 36:239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith HC (2016) RNA binding to APOBEC deaminases; Not simply a substrate for C to U editing. RNA Biol 14:1153–1165

    Google Scholar 

  • Soros VB, Yonemoto W, Greene WC (2007) Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H. PLoS Pathog 3:e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sova P, Volsky DJ (1993) Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. J Virology 67:6322–6326

    Article  CAS  PubMed  Google Scholar 

  • Stavrou S, Crawford D, Blouch K, Browne EP, Kohli RM, Ross SR (2014) Different modes of retrovirus restriction by human APOBEC3A and APOBEC3G in vivo. PLoS Pathog 10:e1004145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strebel K, Khan MA (2008) APOBEC3G encapsidation into HIV-1 virions: which RNA is it? Retrovirology 5:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svarovskaia ES, Xu H, Mbisa JL, Barr R, Gorelick RJ, Ono A, Freed EO, Hu WS, Pathak VK (2004) Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem 279:35822–35828

    Article  CAS  PubMed  Google Scholar 

  • Thangavelu PU, Gupta V, Dixit NM (2014) Estimating the fraction of progeny virions that must incorporate APOBEC3G for suppression of productive HIV-1 infection. Virology 449:224–228

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan SRR, Kanu N, McGranahan N, Bartek J, Quezada SA, Hare J, Harris RS8, Swanton C1 (2018) Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann Oncology 29:563–572

    Google Scholar 

  • Wang T, Tian C, Zhang W, Luo K, Sarkis PT, Yu L, Liu B, Yu Y, Yu XF (2007) 7SL1 RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J Virology 81:13112–13124

    Article  CAS  PubMed  Google Scholar 

  • Wang TTC, Zhang W, Sarkis PT, Yu XF (2008a) Interaction with 7SL1 RNA but not with HIV-1 genomic RNA or P bodies is required for APOBEC3F virion packaging. J Mol Biol 375:1098–1112

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhang W, Tian C, Liu B, Yu Y, Ding L, Spearman P, Yu XF (2008b) Distinct viral determinants for the packaging of human cytidine deaminases APOBEC3G and APOBEC3C. Virology 377:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedekind JE, Gillilan R, Janda A, Krucinska J, Salter JD, Bennett RP, Raina J, Smith HC (2006) Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits. J Biological Chem 281:38122–38126

    Article  CAS  Google Scholar 

  • Wichroski MJ, Robb GB, Rana TM (2006) Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog 2:e41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Li SX, Yang H, Chen XS (2016) Crystal structures of APOBEC3G N-domain alone and its complex with DNA. Nat Commun 7:12193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Yang H, Arutiunian V, Fang Y, Besse G, Morimoto C, Zirkle B, Chen XS (2017) Structural determinants of APOBEC3B non-catalytic domain for molecular assembly and catalytic regulation. Nucleic Acids Res 45:7494–7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Chertova E, Chen J, Ott DE, Roser JD, Hu WS, Pathak VK (2007) Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions. Virology 360:247–256

    Article  CAS  PubMed  Google Scholar 

  • York A, Kutluay SB, Errando M, Bieniasz PD (2016) The RNA binding specificity of human APOBEC3 proteins resembles That of HIV-1 Nucleocapsid. PLoS Pathog 12:e1005833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Du J, Yu K, Wang T, Yong X, Yu XF (2010) Association of potent human antiviral cytidine deaminases with 7SL1 RNA and viral RNP in HIV-1 virions. J Virology 84:12903–12913

    Article  CAS  PubMed  Google Scholar 

  • Zhang KL, Mangeat B, Ortiz M, Zoete V, Trono D, Telenti A, Michielin O (2007) Model structure of human APOBEC3G. PLoS ONE 2:e378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Webb DM (2004) Rapid evolution of primate antiviral enzyme APOBEC3G. Hum Mol Genet 13:1785–1791

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y-H, Jeang K-T, Tokunaga K (2012) Host restriction factors in retroviral infection: promises in virus-host interaction. Retrovirology 9:112

    Google Scholar 

  • Ziegler SJ, Liu C, Landau M, Buzovetsky O, Desimmie BA, Zhao Q, Sasaki T, Burdick RC, Pathak VK, Anderson KS et al (2018) Insights into DNA substrate selection by APOBEC3G from structural, biochemical, and functional studies. PLoS ONE 13:e0195048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold C. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salter, J.D., Polevoda, B., Bennett, R.P., Smith, H.C. (2019). Regulation of Antiviral Innate Immunity Through APOBEC Ribonucleoprotein Complexes. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes II: Structure and Function . Subcellular Biochemistry, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-28151-9_6

Download citation

Publish with us

Policies and ethics