Skip to main content

Amyloid Oligomers, Protofibrils and Fibrils

  • Chapter
  • First Online:
Macromolecular Protein Complexes II: Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 93))

Abstract

Amyloid diseases are of major concern all over the world due to a number of factors including: (i) aging population, (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multi-targeting small molecules as therapeutic options. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia/cell dysfunction. Here, in this chapter, we have described the recent scenario of amyloid diseases with a great deal of information about the structural features of oligomers, protofibrils and fibrils. Also, comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates. Moreover, a review of the technologies that aid characterisation of oligomer, protofibrils and fibrils as well as various inhibition strategies to overcome protein fibrillation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam P, Beg AZ et al (2017a) Ascorbic acid inhibits human insulin aggregation and protects against amyloid induced cytotoxicity. Arch Biochem Biophys 621:54–62

    Article  CAS  PubMed  Google Scholar 

  • Alam P, Siddiqi MK et al (2017b) Vitamin B12 offers neuronal cell protection by inhibiting Aβ-42 amyloid fibrillation. Int J Biol Macromol 99:477–482

    Article  CAS  PubMed  Google Scholar 

  • Arispe N, Doh M (2002) Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AβP (1–40) and (1–42) peptides. FASEB J 16(12):1526–1536

    Article  CAS  PubMed  Google Scholar 

  • Bagriantsev SN, Kushnirov VV et al (2006) Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol 412:33–48

    Article  CAS  PubMed  Google Scholar 

  • Bartolini M, Andrisano V (2010) Strategies for the inhibition of protein aggregation in human diseases. ChemBioChem 11(8):1018–1035

    Article  CAS  PubMed  Google Scholar 

  • Bhutani N, Venkatraman P et al (2007) Puromycin-sensitive aminopeptidase is the major peptidase responsible for digesting polyglutamine sequences released by proteasomes during protein degradation. EMBO J 26(5):1385–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitan G, Lomakin A et al (2001) Amyloid β-protein oligomerization. I. Prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem

    Google Scholar 

  • Bitan G, Fradinger EA et al (2005) Neurotoxic protein oligomers—what you see is not always what you get. Amyloid 12(2):88–95

    Article  PubMed  Google Scholar 

  • Blennow K, Hampel H et al (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131

    Google Scholar 

  • Bodner RA, Outeiro TF et al (2006) Pharmacological promotion of inclusion formation: a therapeutic approach for Huntington’s and Parkinson’s diseases. Proc Natl Acad Sci 103(11):4246–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18(4):351–357

    Article  CAS  PubMed  Google Scholar 

  • Brkic M, Balusu S et al (2015) Amyloid β oligomers disrupt blood’s CSF barrier integrity by activating and detection. Process Biochem 51(9):1183–1192

    Google Scholar 

  • Brown CR, Hong-Brown LQ et al (1996) Chemical chaperones correct the mutant phenotype of the ΔF508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperon 1(2):117

    Google Scholar 

  • Brown PH, Balbo A et al (2008) Characterizing protein - protein interactions by sedimentation velocity analytical ultracentrifugation. Curr Protoc Immunol 81(1):18.15.1–18.15.39

    Google Scholar 

  • Bullock J (1993) Application of capillary electrophoresis to the analysis of the oligomeric distribution of polydisperse polymers. J Chromatogr A 645(1):169–177

    Google Scholar 

  • Burdick D, Soreghan B et al (1992) Assembly and aggregation properties of synthetic Alzheimer's A4/beta amyloid peptide analogs. J Biol Chem 267(1):546–554

    Google Scholar 

  • Cantor CR, Schimmel PR (1981). Biophysical chemistry: part II - Techniques for the study of biological structure and function. Biochem Educ 1:157–157

    Google Scholar 

  • Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples:  localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69(23):4751–4760

    Google Scholar 

  • Chaudhuri JB, Batas B et al (1996) Improving protein refolding yields by minimizing aggregation. Ann N Y Acad Sci 782(1):495–505

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi SK, Siddiqi MK, Alam P, Khan RH (2016) Protein misfolding and aggregation: mechanism, factors and detection. Process Biochemi 51(9):1183–1192

    Google Scholar 

  • Chen L (2015) De novo protein structure modeling and energy function design. Old Dominion University

    Google Scholar 

  • Chen SW, Drakulic S et al (2015) Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proc Nat Acad Sci 201421204

    Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  • Coalier KA, Paranjape GS et al (2013) Stability of early-stage amyloid-β (1–42) aggregation species. Biochim et Biophys Acta (BBA)-Proteins Proteomics 1834(1):65–70

    Google Scholar 

  • Crane JM, Tamm LK (2004) Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys J 86(5):2965–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings J, Lee G et al (2018) Alzheimer’s disease drug development pipeline: 2018. Alzheimer’s & Dementia: Translational Research & Clinical Interventions

    Google Scholar 

  • Cummings JL, Vinters HV et al (1998) Alzheimer’s disease etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51(1 Suppl 1):S2–S17

    Article  CAS  PubMed  Google Scholar 

  • Damaschun G, Damaschun H et al (1999) Proteins can adopt totally different folded conformations. J Mol Biol 291(3):715–725

    Article  CAS  PubMed  Google Scholar 

  • Dasari M, Espargaro A et al (2011) Bacterial inclusion bodies of Alzheimer’s Disease β-amyloid peptides can be employed to study native-like aggregation intermediate states. ChemBioChem 12(3):407–423

    Article  CAS  PubMed  Google Scholar 

  • de Chaves EP, Sipione S (2010) Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett 584(9):1748–1759

    Article  CAS  Google Scholar 

  • de la Paz ML, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci 101(1):87–92

    Article  CAS  Google Scholar 

  • Di Scala C, Yahi N et al (2016) Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide andα-synuclein. Sci Rep 6:28781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding W-X, Yin X-M (2008) Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4(2):141–150

    Article  CAS  PubMed  Google Scholar 

  • Dong X-X, Wang Y et al (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30(4):379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282(5389):740–744

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148(6):1188–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauvet B, Kamdem MM et al (2012) Alpha-synuclein in the central nervous system and from erythrocytes, mammalian cells and E. coli exists predominantly as a disordered monomer. J Biol Chem: jbc. M111 318949

    Google Scholar 

  • Fawzi NL, Ying J et al (2010) Kinetics of amyloid β monomer-to-oligomer exchange by NMR relaxation. J Am Chem Soc 132(29):9948–9951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3(1):R9–R23

    Article  CAS  PubMed  Google Scholar 

  • Fodera V, Librizzi F et al (2008) Secondary nucleation and accessible surface in insulin amyloid fibril formation. J Phys Chem B 112(12):3853–3858

    Article  CAS  PubMed  Google Scholar 

  • Forloni G, Angeretti N et al (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543

    Article  CAS  PubMed  Google Scholar 

  • Frid P, Anisimov SV et al (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53(1):135–160

    Article  CAS  PubMed  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70(1):603–647

    Article  CAS  PubMed  Google Scholar 

  • Gabrielson JP, Arthur KK et al (2011) Precision of protein aggregation measurements by sedimentation velocity analytical ultracentrifugation in biopharmaceutical applications. Anal Biochem 396(2):231–241

    Article  CAS  Google Scholar 

  • Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283(44):29639–29643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14(7):1261–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsbury C, Baxa U et al (2011) Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol 173(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Gosal WS, Myers SL et al (2006) Amyloid under the atomic force microscope. Protein Pept Lett 13(3):261–270

    Article  CAS  PubMed  Google Scholar 

  • Groenning M (2010) Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. J Chem Biol 3(1):1–18

    Article  PubMed  Google Scholar 

  • Guise AD, West SM et al (1996) Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol Biotechnol 6(1):53–64

    Article  CAS  PubMed  Google Scholar 

  • Guivernau B, Bonet J et al (2016) Amyloid-β peptide nitrotyrosination stabilizes oligomers and enhances nmdar-mediated toxicity. J Neurosci 36(46):11693–11703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8(2):101

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A et al (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324

    Article  CAS  PubMed  Google Scholar 

  • Hassan PA, Rana S et al (2014) Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir 31(1):3–12

    Article  CAS  PubMed  Google Scholar 

  • Hermes M, Eichhoff G et al (2010) Intracellular calcium signalling in Alzheimer’s disease. J Cell Mol Med 14(12):30–41

    Google Scholar 

  • Hersh LB, Rodgers DW (2008) Neprilysin and amyloid beta peptide degradation. Curr Alzheimer Res 5(2):225–231

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Cheng H et al (2006) Heat shock protein 70 inhibits α-synuclein fibril formation via interactions with diverse intermediates. J Mol Biol 364(3):323–336

    Article  CAS  PubMed  Google Scholar 

  • Huang B, He J et al (2009) Cellular membrane disruption by amyloid fibrils involved intermolecular disulfide cross-linking. Biochemistry 48(25):5794–5800

    Article  CAS  PubMed  Google Scholar 

  • Hubin E, Van Nuland NAJ et al (2014) Transient dynamics of Aβ contribute to toxicity in Alzheimer’s disease. Cell Mol Life Sci 71(18):3507–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvine GB, El-Agnaf OM et al (2008) Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol Med 14(7–8):451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jomova K, Valko M (2011) Importance of iron chelation in free radical-induced oxidative stress and human disease. Curr Pharm Des 17(31):3460–3473

    Article  CAS  PubMed  Google Scholar 

  • Kakio A, Nishimoto S-I et al (2002) Interactions of amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41(23):7385–7390

    Article  CAS  PubMed  Google Scholar 

  • Karasek FW (1974) Plasma chromatography. Anal Chem 46(8):710A–720a

    Article  CAS  Google Scholar 

  • Kawamata H, Manfredi G (2010) Mitochondrial dysfunction and intracellular calcium dysregulation in ALS. Mech Ageing Dev 131(7–8):517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayed R, Lasagna-Reeves CA (2013) Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis 33(s1):S67–S78

    Article  CAS  PubMed  Google Scholar 

  • Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1(4):349–384

    Article  CAS  PubMed  Google Scholar 

  • Kim H-Y, Cho M-K et al (2009) Structural properties of pore-forming oligomers of α-synuclein. J Am Chem Soc 131(47):17482–17489

    Article  CAS  PubMed  Google Scholar 

  • Kirkitadze MD, Bitan G et al (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69(5):567–577

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa M, Medeiros R et al (2012) Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des 18(8):1131–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles TPJ, Vendruscolo M et al (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15(6):384

    Article  CAS  PubMed  Google Scholar 

  • Kondratskyi A, Yassine M et al (2013) Calcium-permeable ion channels in control of autophagy and cancer. Front Physiol 4:272

    Article  PubMed  PubMed Central  Google Scholar 

  • Kress GJ, Mennerick S (2009) Action potential initiation and propagation: upstream influences on neurotransmission. Neuroscience 158(1):211–222

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Lin H et al (2007) Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim et Biophys Acta (BBA)-Biomembr 1768(8):1966–1975

    Google Scholar 

  • Lawrence GJ, Payne PI (1983) Detection by gel electrophoresis of oligomers formed by the association of high-molecular-weight glutenin protein subunits of wheat endosperm. J Exp Bot 34(3):254–267

    Article  CAS  Google Scholar 

  • Lemasters JJ, Nieminen AL et al (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim et Biophys Acta (BBA)-Bioenerg 1366(1–2):177–196

    Google Scholar 

  • Levine Iii H (1993) Thioflavin T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2(3):404–410

    Article  Google Scholar 

  • Levine Iii H (2004) Alzheimer’s β-peptide oligomer formation at physiologic concentrations. Anal Biochem 335(1):81–90

    Article  CAS  Google Scholar 

  • Lewandowski JZR, van der Wel PCA et al (2011) Structural complexity of a composite amyloid fibril. J Am Chem Soc 133(37):14686–14698

    Google Scholar 

  • Li D-W, Mohanty S et al (2008) Formation and growth of oligomers: a Monte Carlo study of an amyloid tau fragment. PLoS Comput Biol 4(12):e1000238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstrom V, Fagerqvist T et al (2014) Immunotherapy targeting α-synuclein protofibrils reduced pathology in (Thy-1)-h [A30P] α-synuclein mice. Neurobiol Dis 69:134–143

    Article  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A et al (2000) The action potential and conduction of electric impulses

    Google Scholar 

  • Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci 91(25):12243–12247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luxembourg SL, Mize TH et al (2004) High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal Chem 76(18):5339–5344

    Article  CAS  PubMed  Google Scholar 

  • MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32(4s):526

    Article  CAS  PubMed  Google Scholar 

  • Magi S, Castaldo P et al (2016) Intracellular calcium dysregulation: implications for Alzheimer’s disease. BioMed Res Int

    Google Scholar 

  • Mahdavimehr M, Katebi B et al (2018) Effect of fibrillation conditions on the anti-amyloidogenic properties of polyphenols and their involved mechanisms. Int J Biol Macromol 118:552–560

    Article  CAS  PubMed  Google Scholar 

  • Mahler H-C, Friess W et al (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98(9):2909–2934

    Article  CAS  PubMed  Google Scholar 

  • Malchiodi-Albedi F, Paradisi S et al (2011) Amyloid oligomer neurotoxicity, calcium dysregulation, and lipid rafts. Int J Alzheimer’s Dis

    Google Scholar 

  • Marambaud P, Dreses-Werringloer U et al (2009) Calcium signaling in neurodegeneration. Mol Neurodegeneration 4(1):20

    Article  CAS  Google Scholar 

  • McDermott JR, Gibson AM (1997) Degradation of Alzheimer’s β-Amyloid Protein by Human and Rat Brain Peptidases: involvement of Insulin-Degrading Enzyme. Neurochem Res 22(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • McDonald JM, Savva GM et al (2010) The presence of sodium dodecyl sulphate-stable Aβ dimers is strongly associated with Alzheimer-type dementia. Brain 133(5):1328–1341

    Article  Google Scholar 

  • Mezler M, Barghorn S et al (2012) A β-amyloid oligomer directly modulates P/Q-type calcium currents in Xenopus oocytes. Br J Pharmacol 165(5):1572–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda E, MacLeod I et al (2008) The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB. Hum Mol Genet 17(11):1527–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missiroli S, Patergnani S et al (2018) Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis 9(3):329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais-de-Sa E, Neto-Silva RM et al (2006) The binding of 2, 4-dinitrophenol to wild-type and amyloidogenic transthyretin. Acta Crystallogr D Biol Crystallogr 62(5):512–519

    Article  CAS  PubMed  Google Scholar 

  • Morris GP, Clark IA et al (2014) Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol Commun 2(1):135

    PubMed  PubMed Central  Google Scholar 

  • Musiek ES, Holtzman DM (2015) Three dimensions of the amyloid hypothesis: time, space and’wingmen’. Nat Neurosci 18(6):800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34(1):151–160

    Article  CAS  PubMed  Google Scholar 

  • Ono Y, Sorimachi H (2012) Calpains—an elaborate proteolytic system. Biochim et Biophys Acta (BBA)-Proteins Proteomics 1824(1):224–236

    Google Scholar 

  • Otzen DE (2013) Amyloid fibrils and prefibrillar aggregates: molecular and biological properties. Wiley

    Google Scholar 

  • Parvez Alam KSSKCRHK (2017) Protein aggregation: from background to inhibition strategies. Int J Biol Macromol 109:208–219

    Article  CAS  Google Scholar 

  • Paslawski W, Mysling S et al (2014) Co-existence of two different α-synuclein oligomers with different core structures determined by hydrogen/deuterium exchange mass spectrometry. Angew Chem Int Ed 53(29):7560–7563

    Article  CAS  Google Scholar 

  • Pedersen JT, Ostergaard J et al (2011) Cu (II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloid-β peptides. J Biol Chem: jbc. M111:220863

    Google Scholar 

  • Pernber Z, Blennow K et al (2012) Altered distribution of the gangliosides GM1 and GM2 in Alzheimer’s disease. Dement Geriatr Cogn Disord 33(2–3):174–188

    Article  CAS  PubMed  Google Scholar 

  • Picou RA, Schrum DP et al (2012) Separation and detection of individual Aβ aggregates by capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 425(2):104–112

    Article  CAS  PubMed  Google Scholar 

  • Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41(6):1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Podlisny MB, Ostaszewski BL et al (1995) Aggregation of secreted amyloid-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem 270(16):9564–9570

    Article  CAS  PubMed  Google Scholar 

  • Podlisny MB, Walsh DM et al (1998) Oligomerization of endogenous and synthetic amyloid β-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry 37(11):3602–3611

    Article  CAS  PubMed  Google Scholar 

  • Porat Y, Abramowitz A et al (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Pryor E, Kotarek JA et al (2011) Monitoring insulin aggregation via capillary electrophoresis. Int J Mol Sci 12(12):9369–9388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert KY, Tsai Y-T et al (2012) Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 37(6):1230–1244

    Article  CAS  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(7):S10

    Article  CAS  PubMed  Google Scholar 

  • Sabate R, Ventura S (2013) Cross-β-sheet supersecondary structure in amyloid folds: techniques for detection and characterization. Protein Supersecondary Structures, Springer, pp 237–257

    Google Scholar 

  • Salomone S, Caraci F et al (2012) New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Brit J Clin Pharmacol 73(4):504–517

    Google Scholar 

  • Schelterns P, Feldman H (2003) Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol 2(9):539–547

    Article  Google Scholar 

  • Schild L, Reiser G (2005) Oxidative stress is involved in the permeabilization of the inner membrane of brain mitochondria exposed to hypoxia/reoxygenation and low micromolar Ca2+. FEBS J 272(14):3593–3601

    Article  CAS  PubMed  Google Scholar 

  • Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78(3):1606–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebollela A, Freitas-Correa L et al (2012) Amyloid-β oligomers induce differential gene expression in adult human brain slices. J Biol Chem jbc. M111:298471

    Google Scholar 

  • Seeley WW, Crawford RK et al (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62(1):42–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791

    Article  CAS  PubMed  Google Scholar 

  • Sengupta U, Nilson AN et al (2016) The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6:42–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirahama T, Cohen AS (1967) High-resolution electron microscopic analysis of the amyloid fibril. J Cell Biol 33(3):679–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi MK, Alam P et al (2017a) Probing the interaction of cephalosporin antibiotic—ceftazidime with human serum albumin: a biophysical investigation. Int J Biol Macromol 105:292–299

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi MK, Alam P et al (2017b) Attenuation of amyloid fibrillation in presence of Warfarin: a biophysical investigation. Int J Biol Macromol 95:713–718

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi MK, Alam P et al (2017c) Mechanisms of protein aggregation and inhibition. Front Biosci (Elite Ed) 9:1–20

    Article  Google Scholar 

  • Siddiqi MK, Alam P et al (2018) Stabilizing proteins to prevent conformational changes required for amyloid fibril formation. J Cell Biochem 120(2):2642–2656

    Google Scholar 

  • Siddiqi MK, Alam P et al (2018a) Capreomycin inhibits the initiation of amyloid fibrillation and suppresses amyloid induced cell toxicity. Biochim et Biophys Acta (BBA)-Proteins Proteomics 1866(4):549–557

    Article  CAS  Google Scholar 

  • Siddiqi MK, Alam P et al (2018b) Elucidating the inhibitory potential of designed peptides against amyloid fibrillation and amyloid associated cytotoxicity. Front Chem 6:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi M, Nusrat S et al (2018c) Investigating the site selective binding of busulfan to human serum albumin: biophysical and molecular docking approaches. Int J Biol Macromol 107:1414–1421

    Article  CAS  PubMed  Google Scholar 

  • Spires-Jones TL, Attems J et al (2017) Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol 134(2):187–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefani M (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim et Biophys Acta (BBA)-Mol Basis Dis 1739(1):5–25

    Google Scholar 

  • Stefani M (2010a) Structural polymorphism of amyloid oligomers and fibrils underlies different fibrillization pathways: immunogenicity and cytotoxicity. Curr Protein Pept Sci 11(5):343–354

    Article  CAS  PubMed  Google Scholar 

  • Stefani M (2010b) Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. FEBS J 277(22):4602–4613

    Article  CAS  PubMed  Google Scholar 

  • Stefani M (2012) Structural features and cytotoxicity of amyloid oligomers: implications in Alzheimer’s disease and other diseases with amyloid deposits. Prog Neurobiol 99(3):226–245

    Article  CAS  PubMed  Google Scholar 

  • Stephan A, Laroche S et al (2001) Generation of aggregated β-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J Neurosci 21(15):5703–5714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stine WB, Snyder SW et al (1996) The nanometer-scale structure of amyloid-β visualized by atomic force microscopy. J Protein Chem 15(2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Stoeckli M, Knochenmuss R et al (2006) MALDI MS imaging of amyloid. Methods Enzymol 412:94–106

    Article  CAS  PubMed  Google Scholar 

  • Thomas JG, Ayling A et al (1997) Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl Biochem Biotechnol 66(3):197–238

    Article  CAS  PubMed  Google Scholar 

  • Trovato A, Chiti F et al (2006) Insight into the structure of amyloid fibrils from the analysis of globular proteins. PLoS Comput Biol 2(12):e170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker S, Muller C et al (2015) The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis 43(2):575–588

    Article  CAS  PubMed  Google Scholar 

  • Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14(1):96–103

    Article  CAS  PubMed  Google Scholar 

  • Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39(1):1–55

    Article  CAS  PubMed  Google Scholar 

  • Valastyan JS, Lindquist S (2014) Mechanisms of protein-folding diseases at a glance. Dis Models Mech 7(1):9–14

    Article  CAS  Google Scholar 

  • Valincius G, Heinrich F et al (2008) Soluble amyloid β-oligomers affect dielectric membrane properties by bilayer insertion and domain formation: implications for cell toxicity. Biophys J 95(10):4845–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Berg B, Ellis RJ et al (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18(24):6927–6933

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassar R, Bennett BD et al (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Vats A et al (2015) Toxic species in amyloid disorders: Oligomers or mature fibrils. Ann Indian Acad Neurol 18(2):138

    Article  PubMed  PubMed Central  Google Scholar 

  • Vestergaard B, Groenning M et al (2007) A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 5(5):e134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viet MH, Ngo ST et al (2011) Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. J Phys Chem B 115(22):7433–7446

    Article  CAS  PubMed  Google Scholar 

  • Vilar M, Chou H-T et al (2008) The fold of α-synuclein fibrils. Proc Natl Acad Sci 105(25):8637–8642

    Article  PubMed  PubMed Central  Google Scholar 

  • Wadai H, Yamaguchi K-I et al (2005) Stereospecific amyloid-like fibril formation by a peptide fragment of β2-microglobulin. Biochemistry 44(1):157–164

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li Y et al (2014) Effect of strong electric field on the conformational integrity of insulin. J Phys Chem A 118(39):8942–8952

    Article  CAS  PubMed  Google Scholar 

  • Welzel AT, Williams AD et al (2012) Human anti-Aβ IgGs target conformational epitopes on synthetic dimer assemblies and the AD brain-derived peptide. PLoS ONE 7(11):e50317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westermark P (2005) Aspects on human amyloid forms and their fibril polypeptides. FEBS J 272(23):5942–5949

    Article  CAS  PubMed  Google Scholar 

  • Winklhofer KF, Tatzelt J et al (2008) The two faces of protein misfolding: gain—and loss—of function in neurodegenerative diseases. EMBO J 27(2):336–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong EW, Sheehan PE et al (1997) Observation of metastable abeta amyloid protofibrils by atomic force microscopy. Science 277:1971–1975

    Article  CAS  Google Scholar 

  • Woods LA, Radford SE et al (2013) Advances in ion mobility spectrometry: mass spectrometry reveal key insights into amyloid assembly. Biochim et Biophys Acta (BBA)-Proteins Proteomics 1834(6):1257–1268

    Google Scholar 

  • Xue W-F, Hellewell AL et al (2009) Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem 284(49):34272–34282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa K (2007) Role of gangliosides in Alzheimer’s disease. Biochim et Biophys Acta (BBA)-Biomembr 1768(8): 1943–1951

    Google Scholar 

  • Zheng W (2001) Neurotoxicology of the brain barrier system: new implications. J Toxicol Clin Toxicol 39(7):711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Facilities provided by Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh are gratefully acknowledged. For providing financial assistance, M.K.S. is thankful to Department of Biotechnology (DBT), New Delhi, India, P.A. and N.M. are thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India, S.M. is thankful to Indian Council of Medical Research (ICMR), New Delhi, India. R.H.K. is thankful to CSIR and UGC for project referenced as 37(1676)/17/EMR—II and F. 19-219/2018, respectively.

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Hasan Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqi, M.K., Majid, N., Malik, S., Alam, P., Khan, R.H. (2019). Amyloid Oligomers, Protofibrils and Fibrils. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes II: Structure and Function . Subcellular Biochemistry, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-28151-9_16

Download citation

Publish with us

Policies and ethics