Skip to main content

Applications and PV/T Systems

  • Chapter
  • First Online:
Photovoltaic/Thermal (PV/T) Systems

Abstract

This chapter provides a description of the current state of the global solar thermal industry and market along with future possibilities of research and development in the PV/T industry. An outline for the criteria of technical, economic, and environmental performance of PV/T systems is laid out. Various conventional and novel designs of PV/T systems are revisited and studied as theoretical and practical studies. The various configurations of PV/T collectors such as grid-connected PV/T (GCPV/T) and building-integrated PV/T (BIPV/T) are discussed as well. Commercial and industrial solutions and initiative are PV and PV/T systems which are discussed with emphasis on examining the difficulties and barriers associated with delay of PV/T proliferation. Finally, the commercial PV/T products, and PV/T applications, installed by different companies are displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Energy – Consumption “Consumption by fuel, 1965–2008” (XLS), Statistical Review of World Energy 2009, BP. 31 July 2006. Accessed 24 Oct 2009

    Google Scholar 

  2. Global Energy Review (Enerdata Publication, 2009)

    Google Scholar 

  3. Global warming (2011), http://en.wikipedia.org/wiki/Globalwarming. Accessed 2 Nov 2011

  4. “Renewables in global energy supply: an IEA facts sheet”, IEA/OECD; 2007.

    Google Scholar 

  5. Solar heating and cooling for a sustainable energy future in Europe (Revised), European solar thermal technology platform (ESTTP) (2009), http://www.estif.org/fileadmin/estif/content/projects/downloads/ESTTPSRARevisedVersion.pdf

  6. X. Zhang, X. Zhao, S. Smith, J. Xu, X. Yu, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renew. Sustain. Energy Rev. 16, 599–617 (2012)

    Article  CAS  Google Scholar 

  7. Solar thermal action plan for Europe: heating and cooling from the Sun, European Solar Thermal Industry Federation (ESTIF), http://www.estif.org/fileadmin/estif/content/policies/STAP/SolarThermalActionPlan2007A4.pdf (2007)

  8. Technology Roadmap-Solar photovoltaic energy, International Energy Agency, http://www.iea-pvps.org (2010)

  9. H.M.S. Al-Maamary, H.A. Kazem, M.T. Chaichan, Changing the energy profile of the GCC states: A review. Int. J. Appl. Eng. Res. 11(3), 1980–1988 (2016)

    Google Scholar 

  10. A.H.A. Al-Waeli, K. Sopian, H.A. Kazem, M.T. Chaichan, PV/T (photovoltaic/thermal): status and future prospects. Renew. Sustain. Energy Rev. 77, 109–130 (2017)

    Article  Google Scholar 

  11. R. Komp, T. Reeser, Design, construction and operation of a PV/Hot air hybrid energy system, in ISES Solar World Congress, 1987

    Google Scholar 

  12. B. Moshtegh, M. Sandbergy, Investigation of fluid flow and heat transfer in a vertical channel heated from one side by PV elements, Part I–numerical study. Renew. Energy 8, 248–253 (1996)

    Article  Google Scholar 

  13. M. Sandbergy, B. Moshtegh, Investigation of fluid flow and heat transfer in a vertical channel heated from one side by PV elements, Part II – experimental study. Renew. Energy 8, 254–258 (1996)

    Article  Google Scholar 

  14. K.S. Sopian, H.T. Yigit, H.T. Liu, S. Kakac, T.N. Veziroglu, Performance analysis of photovoltaic/thermal air heaters. Energ. Conver. Manage. 37(11), 1657–1670 (1996)

    Article  Google Scholar 

  15. J. Ji, T.-T. Chow, W. He, Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong. Build. Environ. 38, 1327–1334 (2003)

    Article  Google Scholar 

  16. J.K. Tonui, Y. Tripanagnostopoulos, Performance improvement of PV/T solar collectors with natural air flow operation. Sol. Energy 82, 1–12 (2008)

    Article  Google Scholar 

  17. A. Shahsavar, M. Ameri, Experimental investigation and modeling of a direct coupled PV/T air collector. Sol. Energy 84, 1938–1958 (2010)

    Article  Google Scholar 

  18. B.J. Huang, Performance rating method of thermosyphon solar water heaters. Sol. Energy 50, 435–440 (1993)

    Article  CAS  Google Scholar 

  19. R.K. Agarwal, H.P. Garg, Study of a photovoltaic–thermal system – thermosyphonic solar water heater combined with solar cells. Energ. Conver. Manage. 35(7), 605–620 (1994)

    Article  Google Scholar 

  20. H.P. Grag, R.K. Agarwal, Some aspects of a PV/T collector/forced circulation flat-plat solar water heater with solar cells. Energ. Conver. Manage. 36, 87–99 (1995)

    Article  Google Scholar 

  21. T. Bergene, O.M. Lovvik, Model calculations on a flat plate solar heat collector with integrated solar cells. Sol. Energy 55(6), 453–462 (1995)

    Article  CAS  Google Scholar 

  22. S.A. Kalogirou, Use of TRNSYS for modelling and simulation of a hybrid PV–thermal solar system for Cyprus. Renew. Energy 23, 247–260 (2001)

    Article  CAS  Google Scholar 

  23. M.D. Bazilian, H. Kamalanathan, D.K. Prasad, Thermographic analysis of a building integrated photovoltaic system. Renew. Energy 26, 449–461 (2002)

    Article  CAS  Google Scholar 

  24. T.T. Chow, W. He, J. Ji, Hybrid photovoltaic-thermosyphon water heating system for residential application. Sol. Energy 80, 298–306 (2006)

    Article  CAS  Google Scholar 

  25. T.T. Chow, W. He, J. Ji, An experimental study of facade-integrated photovoltaic/water-heating system. Appl. Therm. Eng. 27, 37–45 (2007)

    Article  Google Scholar 

  26. S. Dubey, A.A.O. Tay, Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy Sustain. Dev. 17, 1–12 (2013)

    Article  CAS  Google Scholar 

  27. H. Jouhara, M. Szulgowska-Zgrzywa, M.A. Sayegh, J. Milko, J. Danielewicz, T.K. Nannou, S.P. Lester, The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications. Energy 136, 117–125 (2017)

    Article  CAS  Google Scholar 

  28. M. Nishikawa, T. Sone, S. Ito, A heat pump using solar hybrid panels as the evaporator, in ISES Solar World Congress, 1993

    Google Scholar 

  29. X. Zhao, X. Zhang, S.B. Riffat, X. Su, Theoretical investigation of a novel PV/e roof module for heat pump operation. Energ. Conver. Manage. 52, 603–614 (2011)

    Article  CAS  Google Scholar 

  30. M. Moradgholi, S.M. Nowee, I. Abrishamchi, Application of heat pipe in an experimental investigation on a novel photovoltaic/thermal (PV/T) system. Sol. Energy 107, 82–88 (2014)

    Article  CAS  Google Scholar 

  31. T. Yousefi, F. Veysi, E. Shojaeizadeh, S. Zinadini, An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 39, 293–298 (2012)

    Article  CAS  Google Scholar 

  32. N. Karami, M. Rahimi, Heat transfer enhancement in a PV cell using Boehmite nanofluid. Energ. Conver. Manage. 86, 275–285 (2014)

    Article  CAS  Google Scholar 

  33. M. Sardarabadi, M. Passandideh-Fard, S.Z. Heris, Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy 66, 264–272 (2014)

    Article  CAS  Google Scholar 

  34. S. Hassani, R. Saidur, S. Mekhilef, R.A. Taylor, Environmental and exergy benefit of nanofluid-based hybrid PV/T systems. Energ. Conver. Manage. 123(1), 431–444 (2016)

    Article  CAS  Google Scholar 

  35. D. Jing, Y. Hu, M. Liu, J. Wei, L. Guo, Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system. Sol. Energy 112, 30–40 (2015)

    Article  CAS  Google Scholar 

  36. M. Ghadiri, M. Sardarabadi, M. Pasandideh-fard, A.J. Moghadam, Experimental investigation of a PVT system performance using nano ferrofluids. Energ. Conver. Manage. 103, 468–476 (2015)

    Article  CAS  Google Scholar 

  37. A.N. Al-Shamani, K. Sopian, S. Mat, H.A. Hasan, A.M. Abed, M.H. Ruslan, Experimental studies of rectangular tube absorber PV thermal collector with various types of nanofluids under the tropical climate conditions. Energ. Conver. Manage. 124, 528–542 (2016)

    Article  CAS  Google Scholar 

  38. A.H.A. Al-Waeli, M.T. Chaichan, H.A. Kazem, K. Sopian, Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energ. Conver. Manage. 148(15), 963–973 (2017)

    Article  CAS  Google Scholar 

  39. A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, et al., An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energ. Conver. Manage. 142, 547–558 (2017)

    Article  CAS  Google Scholar 

  40. A.H.A. Al-Waeli, M.T. Chaichan, H.A. Kazem, K. Sopian, A. Ibrahim, S. Mat, M.H. Ruslan, Comparison study of indoor/outdoor experiments of a photovoltaic thermal PV/T system containing SiC nanofluid as a coolant. Energy 151, 33e44 (2018)

    Article  CAS  Google Scholar 

  41. S. Aberoumand, S. Ghamari, B. Shabani, Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study. Sol. Energy 165, 167–177 (2018)

    Article  CAS  Google Scholar 

  42. A.H.A. Al-Waeli, M.T. Chaichan, K. Sopian, H.A. Kazem, Influence of the base fluid on the thermo-physical properties of PV/T nanofluids with surfactant. Case Stud. Therm. Eng. 13, 100340 (2019)

    Article  Google Scholar 

  43. A.H.A. Al-Waeli, M.T. Chaichan, H.A. Kazem, K. Sopian, Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems. Case Stud. Therm. Eng. 13, 100392 (2019)

    Article  Google Scholar 

  44. A. Hasan, S.J. McCormack, M.J. Huang, B. Norton, Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol. Energy 84, 1601–1612 (2010)

    Article  CAS  Google Scholar 

  45. M.J. Huang, The effect of using two PCMs on the thermal regulation performance of BIPV systems. Sol Energy Mater Solar Cells 95, 957–963 (2011)

    Article  CAS  Google Scholar 

  46. M.J. Huang, P.C. Eames, B. Norton, N.J. Hewitt, Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Sol. Energy Mater. Sol. Cells 95, 1598–1603 (2011)

    Article  CAS  Google Scholar 

  47. S. Maiti, S. Banerjee, K. Vyas, P. Patel, P.K. Ghosh, Self-regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Sol. Energy 85, 1805–1816 (2011)

    Article  CAS  Google Scholar 

  48. A. Hassan, H. Nouman, A. Assi, B. Norton, Temperature regulation and thermal energy storage potential of phase change materials layer contained at the back of a building integrated photovoltaic panel, in Proceedings of the 30th International Plea Conference, 2014, pp. 16–18

    Google Scholar 

  49. A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, A. Ibrahim, S. Mat, M.H. Ruslan, Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energ. Conver. Manage. 151, 693–708 (2017)

    Article  CAS  Google Scholar 

  50. S.D. Hendrie, Evaluation of combined photovoltaic/thermal collectors, in ISES International Congress and Silver Jubilee, 1980, p. 1865–1869.

    Google Scholar 

  51. C.H. Cox, P. Raghuraman, Design considerations for flat-plate photovoltaic/thermal collectors. Sol. Energy 35(3), 227–241 (1985)

    Article  CAS  Google Scholar 

  52. H.P. Grag, R.K. Agarwal, Some aspects of a PV/T collector/forced circulation flat-plat solar water heater with solar cells. Energy Convers. Manage. 36, 87–99 (1995)

    Article  Google Scholar 

  53. Y. Gu, X. Zhang, J.A. Myhren, M. Han, X. Chen, Y. Yu, Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for building application in Sweden using Monte Carlo method. Energ. Conver. Manage. 165, 8–24 (2018)

    Article  Google Scholar 

  54. M.E.A. Alfegi, K. Sopian, M.Y.H. Othman, B.B. Yatim, Transient mathematical model of both side single pass photovoltaic thermal air collector. ARPN J. Eng. Appl. Sci. 2, 22–26 (2007)

    Google Scholar 

  55. A. Ibrahim, G.L. Jin, R. Daghigh, M.H.M. Salleh, M.Y. Othman, M.H. Ruslan, et al., Hybrid photovoltaic thermal (PV/T) air and water based solar collectors suitable for building integrated applications. Am. J. Environ. Sci. 5, 618–624 (2009)

    Article  Google Scholar 

  56. B.J. Huang, T.H. Liu, W.C. Hung, F.S. Sun, Performance evaluation of solar photovoltaic/thermal systems. Sol. Energy 70, 443–448 (2001)

    Article  CAS  Google Scholar 

  57. T.T. Chow, Performance analysis of photovoltaic–thermal collector by explicit dynamic model. Sol. Energy 75(2), 143–152 (2003)

    Article  Google Scholar 

  58. P. Dupeyrata, C. Ménézo, S. Fortuin, Study of the thermal and electrical performances of PVT solar hot water system. Energ. Buildings 68, 751–755 (2014)

    Article  Google Scholar 

  59. K.-K. Tse, T.-T. Chow, Y. Su, Performance evaluation and economic analysis of a full scale water-based photovoltaic/thermal (PV/T) system in an office building. Energ. Buildings 122, 42–52 (2016)

    Article  Google Scholar 

  60. A. Khelifa, K. Touafek, H. Ben Moussa, I. Tabet, Modeling and detailed study of hybrid photovoltaic thermal (PV/T) solar collector. Sol. Energy 135, 169–176 (2016)

    Article  Google Scholar 

  61. J. Bigorajski, D. Chwieduk, Analysis of a micro photovoltaic/thermal (PV/T) system operation in moderate climate. Renew. Energy 137, 1–10 (2018). https://doi.org/10.1016/j.renene.2018.01.116

    Article  Google Scholar 

  62. X.U. Guoying, S. Deng, X. Zhang, L. Yang, Y. Zhang, Simulation of a photovoltaic/thermal heat pump system having modified collector/evaporator. Sol. Energy 83, 1967–1976 (2009)

    Article  CAS  Google Scholar 

  63. S.-Y. Wu, Q.-L. Zhang, L. Xiao, F.-H. Guo, A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation. Energ. Buildings 43, 3558–3567 (2011)

    Article  Google Scholar 

  64. P. Gang, F. Huide, Z. Huijuan, J. Jie, Performance study and parametric analysis of a novel heat pipe PV/T system. Energy 37, 384–395 (2012)

    Article  CAS  Google Scholar 

  65. B. Zhang, J. Lv, H. Yang, T. Li, S. Ren, Performance analysis of a heat pipe PV/T system with different circulation tank capacities. Appl. Therm. Eng. 87, 89–97 (2015)

    Article  Google Scholar 

  66. H. Long, T.-T. Chow, J. Ji, Building-integrated heat pipe photovoltaic/thermal system for use in Hong Kong. Sol. Energy 155, 1084–1091 (2017)

    Article  Google Scholar 

  67. Y. Khanjari, F. Pourfayaz, A.B. Kasaeian, Numerical investigation on using of nanofluid in a water-cooled PV thermal system. Energ. Conver. Manage. 122, 263–278 (2016)

    Article  CAS  Google Scholar 

  68. O. Rejeb, M. Sardarabadi, C. Ménézo, M. Passandideh-Fard, M.H. Dhaou, A. Jemni, Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energ. Conver. Manage. 110, 367–377 (2016)

    Article  CAS  Google Scholar 

  69. M.A. Adriana, Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches. Int. J. Heat Mass Transfer 104, 852–860 (2017)

    Article  CAS  Google Scholar 

  70. M. Huang, P. Eames, B. Norton, Comparison of predictions made using a new 3D phase change material thermal control model with experimental measurements and predictions made using a validated 2D model. Heat Transfer Eng. 28, 31–37 (2007)

    Article  CAS  Google Scholar 

  71. M. Cellura, V.L. Brano, A. Marvuglia A Heat Transfer Eng. Photovoltaic panel coupled with a phase changing material heat storage system in hot climates, in PLEA 2008 – 25th conference on passive and low energy architecture, Dublin, Ireland

    Google Scholar 

  72. J.H.C. Hendricks, W.G.J.H.M. Sark, Annual performance enhancement of building integrated photovoltaic modules by applying phase change materials. Progr. Photovolt. 21, 620–630 (2013)

    Google Scholar 

  73. V.L. Brano, G. Ciulla, A. Piacentino, F. Cardona, On the efficacy of PCM to shave peak temperature of crystalline photovoltaic panels: an FDM model and field validation. Energies 6, 6188–6210 (2013)

    Article  Google Scholar 

  74. V.L. Brano, G. Ciulla, A. Piacentino, F. Cardona, Finite difference thermal model of a latent heat storage system coupled with a photovoltaic device: description and experimental validation. Renew. Energy 68, 181–193 (2014)

    Article  Google Scholar 

  75. A. Machniewicz, D. Knera, D. Heim, Effect of transition temperature on efficiency of PV/PCM panels. Energy Procedia 78, 1684–1689 (2015)

    Article  Google Scholar 

  76. A.H.A. Al-Waeli, M.T. Chaichan, K. Sopian, H.A. Kazem, H.B. Mahood, A.A. Khadom, Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Sol. Energy 177, 178–191 (2019)

    Article  CAS  Google Scholar 

  77. TWINSOLAR (2010), http://www.grammer-solar.com/en/products/twinsolar/index.shtml. Accessed 20 Dec 2010

  78. SolarVenti (2010), http://www.solarventi.com. Accessed 20 Dec 2010

  79. Solar Wall (2010), http://solarwall.com/en/home.php. Accessed 20 Dec 2010

  80. MULTI SOLAR PV/T System (2010), http://www.millenniumsolar.com. Accessed 20 Dec 2010

  81. Solar Collector X10 (2010), http://www.absolicon.com. Accessed 20 Dec 2010

  82. PV/T examples (2010), http://www.iea-shc.org/task35/examples.htm. Accessed 11 Oct 2010

  83. P. Barnwal, G.N. Tiwari, Life cycle energy metrics and CO2 credit analysis of a hybrid photovoltaic/thermal greenhouse dryer. Int. J. Low Carbon Technol 3(3), 203–220 (2019)

    Article  Google Scholar 

  84. T.T. Chow, J.W. Hand, P.A. Strachan, Building-integrated photovoltaic and thermal applications in a subtropical hotel building. Appl. Therm. Eng. 23, 2035–2049 (2003)

    Article  CAS  Google Scholar 

  85. S.A. Kalogirou, Y. Tripanagnostopoulos, Industrial application of PV/T solar energy systems. Appl. Therm. Eng. 27, 1259–1270 (2007)

    Article  CAS  Google Scholar 

  86. I. Farkas, I. Seres, C.S. Meszaros, Analytical and experimental study of a modular solar dryer’. Renew. Energy 16, 773–778 (1999)

    Article  Google Scholar 

  87. J. Mumba, Development of a photovoltaic powered forced circulation grain dryer for use in the tropics. Renew. Energy 6, 855–862 (1995)

    Article  Google Scholar 

  88. J. Mumba, Design and development of a solar grain dryer incorporating photovoltaic powered air circulation. Energ. Conver. Manage. 37, 615–621 (1996)

    Article  Google Scholar 

  89. A. Tiwari, M.S. Sodha, Parametric study of various configurations of hybrid PV/thermal air collector: experimental validation of theoretical model. Sol. Energy Mater. Sol. Cells 91, 17–28 (2006)

    Article  CAS  Google Scholar 

  90. Solar Energy Research Institute, Malaysia, http://www.ukm.edu.my/seri. Accessed 1 Feb 2019

  91. M. Bosanac, B. Sorensen, K. Ivan, H. Sorensen, N. Bruno, B. Jamal, Photovoltaic/thermal solar collectors and their potential in Denmark (2003). Final Report, EFP Project, www.solenergi.dk/rapporter/pvtpotentialindenmark

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Waeli, A.H.A., Kazem, H.A., Chaichan, M.T., Sopian, K. (2019). Applications and PV/T Systems. In: Photovoltaic/Thermal (PV/T) Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-27824-3_6

Download citation

Publish with us

Policies and ethics