Skip to main content

Introduction

  • Chapter
  • First Online:
Photovoltaic/Thermal (PV/T) Systems

Abstract

Concepts of solar energy technologies like photovoltaic (PV) modules and solar thermal collectors are critical to understand hybrid photovoltaic-thermal (PV/T) collectors. This chapter introduces the field of solar energy by first addressing their market success and potential. Further illustration on solar energy theory is conducted to explain extraterrestrial radiation; different types of solar irradiance, zenith, azimuth, and hour angles; solar and local standard time; equation of time; etc. The measurement of solar irradiance using pyranometers and pyrheliometers is explained as well. The chronology of photovoltaic efficiency development, pivotal moments in solar photovoltaic, and pivotal moments in solar thermal was discussed as well. The concepts of photovoltaic (PV) systems were explained in detail such as PV cell material, composition, components, equivalent electric circuit, IV and power curves, fill factors, and efficiency. Comprehensive literature review of recent studies in PV to showcase broad range of topics such as optimum tilt angle and MPPT tracking, sizing techniques, cost-effectiveness, effects of environmental conditions, hybrid PV systems and PV applications. Solar thermal systems were also explained in terms of concept, classifications, and flat-plate collectors (FPC) type. The components of flat-plate collectors (FPC), energy balance, and thermal and optical efficiencies were discussed, followed by literature review on design and modeling of FPC as well as advanced concepts and designs of FPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.D. Keeling, Industrial production of carbon dioxide from fossil fuels and limestone. Tellus 25(2), 174–198 (1973)

    Article  CAS  Google Scholar 

  2. M.M. Halmann, M. Steinberg, Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology (CRC Press, Boca Raton, 1998)

    Google Scholar 

  3. D.A. Lashof, D.R. Ahuja, Relative contributions of greenhouse gas emissions to global warming. Nature 344(6266), 529 (1990)

    Article  CAS  Google Scholar 

  4. Renewables. Global Status Report (REN21). A comprehensive annual overview of the state of renewable energy (2018), Retrieved on January 5th 2019 – from Ren21.net

  5. Renewables 2018 (IEA). Market analysis and forecast from 2018 to 2023 (2018), Retrieved on January 5th 2019 – from IEA.org

  6. Renewables 2018 (IEA). Solar energy. Retrieved on January 5th 2019 – from IEA.org

  7. L. Lakatos, G. Hevessy, J. Kovacs, Advantages and disadvantages of solar energy and wind-power utilization. World Futures 67(6), 395–408 (2011)

    Article  Google Scholar 

  8. G.B. Dalrymple, The age of the earth in the twentieth century: A problem (mostly) solved. Geol. Soc. Lond., Spec. Publ. 190(1), 205–221 (2001)

    Article  Google Scholar 

  9. M. Pidwirny, Surface Area of Our Planet Covered by Oceans and Continents (University of British Columbia, Okanagan, 2006), Retrieved 2019-11-2

    Google Scholar 

  10. J.W. Morgan, E. Anders, Chemical composition of earth, Venus, and mercury. Proc. Natl. Acad. Sci. 77(12), 6973–6977 (1980)

    Article  CAS  Google Scholar 

  11. M. Emilio, S. Couvidat, R.I. Bush, J.R. Kuhn, I.F. Scholl, Measuring the solar radius from space during the 2012 Venus transit. Astrophys. J. 798(1), 48 (2014)

    Article  Google Scholar 

  12. M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481 (2009)

    Article  CAS  Google Scholar 

  13. D.B. Guenther, Age of the sun. Astrophys. J. 339, 1156–1159 (1989)

    Article  Google Scholar 

  14. J.E. Braun, J.C. Mitchell, Solar geometry for fixed and tracking surfaces. Sol. Energy 31(5), 439–444 (1983)

    Article  Google Scholar 

  15. F. Vignola, J. Michalsky, T. Stoffel, Solar and Infrared Radiation Measurements (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  16. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  17. J.W. Spencer, Fourier series representation of the position of the sun. Search 2(5), 172–172 (1971)

    Google Scholar 

  18. Global Solar Atlas (2018), Retrieved on January 9th 2019 – from globalsolaratlas.info

  19. K.H. Solangi, M.R. Islam, R. Saidur, N.A. Rahim, H. Fayaz, A review on global solar energy policy. Renew. Sust. Energ. Rev. 15(4), 2149–2163 (2011)

    Article  Google Scholar 

  20. Report IEA PVPS T1–33:2018. Snapchat of Global Photovoltaic Markets 2018, Retrieved on 10th January 2019 from iea-pvps.org

  21. A. Goetzberger, J. Knobloch, B. Voss, Crystalline Silicon Solar Cells (Editorial Wiley, Chichester, 1998), p. 1

    Google Scholar 

  22. Tonio Buonassisi, 2.627 Fundamentals of Photovoltaics. (Massachusetts Institute of Technology: MIT OpenCourseWare, Fall 2013), https://ocw.mit.edu. License: Creative Commons BY-NC-SA

  23. A. Luque, S. Hegedus (eds.), Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2011)

    Google Scholar 

  24. E. Lorenzo, Solar Electricity: Engineering of Photovoltaic Systems (Earthscan/James & James, 1994)

    Google Scholar 

  25. D.P. Kaundinya, P. Balachandra, N.H. Ravindranath, Grid-connected versus stand-alone energy systems for decentralized power—A review of literature. Renew. Sust. Energ. Rev. 13(8), 2041–2050 (2009)

    Article  Google Scholar 

  26. B. Marion, J. Adelstein, K.E. Boyle, H. Hayden, B. Hammond, T. Fletcher, B. Canada, D. Narang, A. Kimber, L. Mitchell, G. Rich, Performance parameters for grid-connected PV systems, in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005, (IEEE, Lake Buena Vista, 2005, January), pp. 1601–1606

    Google Scholar 

  27. H.A. Kazem, T. Khatib, A.A. Alwaeli, Optimization of photovoltaic modules tilt angle for Oman, in Power Engineering and Optimization Conference (PEOCO), 2013 IEEE 7th International, (IEEE, Langkawi, 2013, June), pp. 703–707

    Google Scholar 

  28. F. Belhachat, C. Larbes, A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions. Renew. Sust. Energ. Rev. 92, 513–553 (2018)

    Article  Google Scholar 

  29. M. Kacira, M. Simsek, Y. Babur, S. Demirkol, Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renew. Energy 29(8), 1265–1275 (2004)

    Article  Google Scholar 

  30. A. Mellit, Sizing of photovoltaic systems: A review. Rev. Energ. Renouv. 10(4), 463–472 (2007)

    Google Scholar 

  31. B. Herteleer, J. Cappelle, J. Driesen, An autonomous photovoltaic system sizing program for office applications in Africa. The Renew. Energ. & Power Quality Journal 1, 728–733 (2012)

    Google Scholar 

  32. I. Zanesco, A. Moehlecke, G.S. Medeiros, T.C. Severo, D. Eberhardt, S.S. Junior, E.A. Zenzen, Experimental evaluation of an analytic method for sizing stand-alone PV systems, in X Congresso Brasileiro de Energia, Rio de (WIP Renewable Energies, München, 2004), p. 530

    Google Scholar 

  33. B. Burger, R. Rüther, Inverter sizing of grid-connected photovoltaic systems in the light of local solar resource distribution characteristics and temperature. Sol. Energy 80(1), 32–45 (2006)

    Article  CAS  Google Scholar 

  34. M.S. Adaramola, Techno-economic analysis of a 2.1 kW rooftop photovoltaic-grid-tied system based on actual performance. Energy Convers. Manag. 101, 85–93 (2015)

    Article  Google Scholar 

  35. K. Jeong, T. Hong, C. Ban, C. Koo, H.S. Park, Life cycle economic and environmental assessment for establishing the optimal implementation strategy of rooftop photovoltaic system in military facility. J. Clean. Prod. 104, 315–327 (2015)

    Article  Google Scholar 

  36. M.A. Ramli, A. Hiendro, S. Twaha, Economic analysis of PV/diesel hybrid system with flywheel energy storage. Renew. Energy 78, 398–405 (2015)

    Article  Google Scholar 

  37. S. Saib, A. Gherbi, A. Kaabeche, R. Bayindir, Techno-economic optimization of a grid-connected hybrid energy system considering voltage fluctuation. J. Electr. Eng. Technol. 13(2), 659–668 (2018)

    Google Scholar 

  38. P. Rajput, Y.K. Singh, G.N. Tiwari, O.S. Sastry, S. Dubey, K. Pandey, Life cycle assessment of the 3.2 kW cadmium telluride (CdTe) photovoltaic system in composite climate of India. Sol. Energy 159, 415–422 (2018)

    Article  CAS  Google Scholar 

  39. V.J. Fesharaki, M. Dehghani, J.J. Fesharaki, H. Tavasoli, The effect of temperature on photovoltaic cell efficiency, in Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation–ETEC, Tehran, Iran, (Civilica, Tehran, 2011, November), pp. 20–21

    Google Scholar 

  40. Y. Jiang, J.A.A. Qahouq, M. Orabi, Matlab/Pspice hybrid simulation modeling of solar PV cell/module, in Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, (IEEE, Fort Worth, 2011, March), pp. 1244–1250

    Google Scholar 

  41. H. Jiang, L. Lu, K. Sun, Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos. Environ. 45(25), 4299–4304 (2011)

    Article  CAS  Google Scholar 

  42. S. Mekhilef, R. Saidur, M. Kamalisarvestani, Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sust. Energ. Rev. 16(5), 2920–2925 (2012)

    Article  CAS  Google Scholar 

  43. S. Chandra, S. Agrawal, D.S. Chauhan, Effect of ambient temperature and wind speed on performance ratio of polycrystalline Solar photovoltaic module: An experimental analysis. International Energy Journal 18(2) (2018)

    Google Scholar 

  44. S. Dubey, J.N. Sarvaiya, B. Seshadri, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Procedia 33, 311–321 (2013)

    Article  Google Scholar 

  45. A. Shiroudi, R. Rashidi, G.B. Gharehpetian, S.A. Mousavifar, A. Akbari Foroud, Case study: Simulation and optimization of photovoltaic-wind-battery hybrid energy system in Taleghan-Iran using homer software. Journal of Renewable and Sustainable Energy 4(5), 053111 (2012)

    Article  Google Scholar 

  46. H.R. Baghaee, M. Mirsalim, G.B. Gharehpetian, H.A. Talebi, Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system. Energy 115, 1022–1041 (2016)

    Article  Google Scholar 

  47. Prévost, C., Hybrid PV-Biomass Power Plant Design for an Indonesian Village (KTH School of Industrial Engineering and Management, Stockholm, 2018)

    Google Scholar 

  48. J.M. Bright, S. Killinger, D. Lingfors, N.A. Engerer, Improved satellite-derived PV power nowcasting using real-time power data from reference PV systems. Sol. Energy 168, 118–139 (2018)

    Article  Google Scholar 

  49. A.H. Al-Waeli, A.H. Al-Kabi, A. Al-Mamari, H.A. Kazem, M.T. Chaichan, Evaluation of the economic and environmental aspects of using photovoltaic water pumping system, in 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, (Springer, Singapore, 2017), pp. 715–723

    Chapter  Google Scholar 

  50. I. Colak, R. Bayindir, A. Aksoz, E. Hossain, S. Sayilgan, Designing a competitive electric vehicle charging station with solar PV and storage. 2015 IEEE International Telecommunications Energy, 2015, pp. 1–6

    Google Scholar 

  51. A.K. Tiwari, V.R. Kalamkar, Effects of total head and solar radiation on the performance of solar water pumping system. Renew. Energy 118, 919–927 (2018)

    Article  Google Scholar 

  52. E. Biyik, M. Araz, A. Hepbasli, M. Shahrestani, R. Yao, L. Shao, E. Essah, A.C. Oliveira, T. del Caño, E. Rico, J.L. Lechón, A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 20(3), 833–858 (2017)

    Article  Google Scholar 

  53. solarpowerworldonline. NREL: This parabolic trough 73% efficient By Solar Power Engineering (2010, Sep 3rd), https://www.solarpowerworldonline.com. Accessed 2nd Feb 2019

  54. Selvakumar, N., Barshilia, H.C. and Rajam, K.S., Review of Sputter Deposited Mid-to High-Temperature Solar Selective Coatings for Flat Plate/Evacuated Tube Collectors and Solar Thermal Power Generation Applications, (National aerospace laboratories, Bangalore, 2010)

    Google Scholar 

  55. S. Jaisankar, J. Ananth, S. Thulasi, S.T. Jayasuthakar, K.N. Sheeba, A comprehensive review on solar water heaters. Renew. Sust. Energ. Rev. 15(6), 3045–3050 (2011)

    Article  CAS  Google Scholar 

  56. E. Zambolin, D. Del Col, Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 84(8), 1382–1396 (2010)

    Article  CAS  Google Scholar 

  57. VREC Solar. What is the best type of solar thermal panel in terms of performance? http://www.vrec.ca, Accessed 23rd Feb 2019

  58. M. Fan, S. You, X. Gao, H. Zhang, B. Li, W. Zheng, L. Sun, T. Zhou, A comparative study on the performance of liquid flat-plate solar collector with a new V-corrugated absorber. Energy Convers. Manag. 184, 235–248 (2019)

    Article  Google Scholar 

  59. M.A. Karim, M.N.A. Hawlader, Performance investigation of flat plate, v-corrugated and finned air collectors. Energy 31(4), 452–470 (2006)

    Article  CAS  Google Scholar 

  60. A. Alvarez, O. Cabeza, M.C. Muñiz, L.M. Varela, Experimental and numerical investigation of a flat-plate solar collector. Energy 35(9), 3707–3716 (2010)

    Article  CAS  Google Scholar 

  61. D. Rojas, J. Beermann, S.A. Klein, D.T. Reindl, Thermal performance testing of flat-plate collectors. Sol. Energy 82(8), 746–757 (2008)

    Article  CAS  Google Scholar 

  62. J. Aleksiejuk, A. Chochowski, V. Reshetiuk, Analog model of dynamics of a flat-plate solar collector. Sol. Energy 160, 103–116 (2018)

    Article  Google Scholar 

  63. G. Ampuño, L. Roca, J.D. Gil, M. Berenguel, J.E. Normey-Rico, Apparent delay analysis for a flat-plate solar field model designed for control purposes. Sol. Energy 177, 241–254 (2019)

    Article  Google Scholar 

  64. Z. Tian, B. Perers, S. Furbo, J. Fan, Thermo-economic optimization of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series. Energy Convers. Manag. 165, 92–101 (2018)

    Article  Google Scholar 

  65. S. Farahat, F. Sarhaddi, H. Ajam, Exergetic optimization of flat plate solar collectors. Renew. Energy 34(4), 1169–1174 (2009)

    Article  Google Scholar 

  66. F. Jafarkazemi, E. Ahmadifard, Energetic and exergetic evaluation of flat plate solar collectors. Renew. Energy 56, 55–63 (2013)

    Article  Google Scholar 

  67. N.M. Villar, J.C. López, F.D. Muñoz, E.R. García, A.C. Andrés, Numerical 3-D heat flux simulations on flat plate solar collectors. Sol. Energy 83(7), 1086–1092 (2009)

    Article  CAS  Google Scholar 

  68. J.P. Chiou, The effect of nonuniform fluid flow distribution on the thermal performance of solar collector. Sol. Energy 29(6), 487–502 (1982)

    Article  Google Scholar 

  69. S.K. Verma, A.K. Tiwari, S. Tiwari, D.S. Chauhan, Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol. Energy 167, 231–241 (2018)

    Article  CAS  Google Scholar 

  70. Z.A.K. Baharin, M.H. Mohammad, Experimental investigations on the performance of a single slope solar still coupled with flat plate solar collector under Malaysian conditions. J. Mech. Eng. 5, 16–24 (2018)

    Google Scholar 

  71. S.A. Sakhaei, M.S. Valipour, Performance enhancement analysis of the flat plate collectors: A comprehensive review. Renew. Sust. Energ. Rev. 102, 186–204 (2019)

    Article  CAS  Google Scholar 

  72. P. Raj, S. Subudhi, A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renew. Sust. Energ. Rev. 84, 54–74 (2018)

    Article  CAS  Google Scholar 

  73. A.M. Genc, M.A. Ezan, A. Turgut, Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study. Appl. Therm. Eng. 130, 395–407 (2018)

    Article  CAS  Google Scholar 

  74. M. Carmona, M. Palacio, Thermal modelling of a flat plate solar collector with latent heat storage validated with experimental data in outdoor conditions. Sol. Energy 177, 620–633 (2019)

    Article  Google Scholar 

  75. M.M.A. Khan, N.I. Ibrahim, I.M. Mahbubul, H.M. Ali, R. Saidur, F.A. Al-Sulaiman, Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Sol. Energy 166, 334–350 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Waeli, A.H.A., Kazem, H.A., Chaichan, M.T., Sopian, K. (2019). Introduction. In: Photovoltaic/Thermal (PV/T) Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-27824-3_1

Download citation

Publish with us

Policies and ethics