Skip to main content

Postharvest Treatments to Control Ripening

  • Chapter
  • First Online:
Banana Ripening

Abstract

Controlling the initiation of ripening and the speed that ripening progresses is crucial in bananas especially in their international trade. Ripening is mainly controlled by controlling temperature, the gaseous environment around the fruit, the atmospheric pressure in the stores and, to a lesser extent, humidity. Also, several chemical treatments have been tried with different degrees of success. These methods of controlling ripening initiation and the subsequent speed of ripening are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghdam, M. S., Asghari, M., Khorsandi, O., & Mohayeji, M. (2014). Alleviation of postharvest chilling injury of tomato fruit by salicylic acid treatment. Journal of Food Science and Technology, 51, 2815–2820.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, S., & Thompson, A. K. (2007). Effect of modified atmosphere storage on the ripening and quality of ripe banana fruit. Acta Horticulturae, 741, 273–278.

    Article  CAS  Google Scholar 

  • Ahmad, S., Thompson, A. K., & Perviez, M. A. (2006). Effect of harvest maturity stage and hand positions on the ripening behaviour and quality of banana fruit. Acta Horticulturae, 741.

    Google Scholar 

  • Ahmed, Z. F. R., & Palta, J. P. (2011). A natural lipid, lysophosphatidylethanolamine, may promote ripening while reducing senescence in banana fruit. HortScience, 46, 273.

    Article  Google Scholar 

  • Ahmed, Z. F. R., & Palta, J. P. (2015). A postharvest dip treatment with lysophophatidylethanolamine, a natural phospholipid, may retard senescence and improve the shelf life of banana fruit. HortScience, 50, 1035–1040.

    Article  CAS  Google Scholar 

  • Ahmed, Z. F. R., & Palta, J. P. (2016). Postharvest dip treatment with a natural lysophospholipid plus soy lecithin extended the shelf life of banana fruit. Postharvest Biology and Technology, 113, 58–65.

    Article  CAS  Google Scholar 

  • Akkaravessapong, P., Joyce, D. C., & Turner, D. W. (1992). The relative humidity at which bananas are stored or ripened does not influence their susceptibility to mechanical damage. Scientia Horticulturae, 52, 265–268.

    Article  Google Scholar 

  • Al-Zaemey, A. B. S., Falana, I. B., & Thompson, A. K. (1989). Effects of permeable fruit coatings on the storage life of plantains and bananas. Aspects of Applied Biology, 20, 73–80.

    Google Scholar 

  • Amaro, A. L., & Almeida, D. P. F. (2013). Lysophosphatidylethanolamine effects on horticultural commodities: A review. Postharvest Biology and Technology, 78, 92–102.

    Article  CAS  Google Scholar 

  • Anonymous. (2019). Ripelock. https://www.agrofresh.com/technologies/ripelock/. Accessed 7 April 2019.

  • Anuchai, J., Chumthongwattana, M., Tepsorn, R., & Supapavanich, S. (2018). Efficiency of salicylic immersion using fine-bubble technique on quality of Musa AAA fruit during ripening. International Journal of Agricultural Technology, 14, 1003–1016.

    Google Scholar 

  • Apelbaum, A., Aharoni, Y., & Temkin-Gorodeiski, N. (1977). Effects of sub-atmospheric pressure on the ripening processes of banana fruits. Tropical Agriculture, 54, 39–46.

    Google Scholar 

  • Archana, U., & Sivachandiran, S. (2015). Effect of application of gibberellic acid (GA3) on shelf-life of banana. International Journal of Research in Agriculture and Food Sciences, 3, 1–4.

    Google Scholar 

  • Badran, A. M. (1969). Controlled atmosphere storage of green bananas. U.S. Patent 17 June 3, 450, 542.

    Google Scholar 

  • Bagnato, N., Sedgley, M., Barrett, R., & Klieber, A. (2003). Effect of ethanol vacuum infiltration on the ripening of ‘Cavendish bananas’ cv. Williams. Postharvest Biology and Technology, 27, 337–340.

    Article  CAS  Google Scholar 

  • Bangerth, F. (1984). Changes in sensitivity for ethylene during storage of apple and banana fruits under hypobaric conditions. Scientia Horticulturae, 24, 151.

    Article  CAS  Google Scholar 

  • Banks, N. H. (1984). Some Effects of TAL Pro-long coating on ripening bananas. Journal of Experimental Botany, 35, 127–137.

    Article  CAS  Google Scholar 

  • Bhardwaj, C. L., Jones, H. F., & Smith, I. H. (1984). A study of the migration of externally applied sucrose esters of fatty acids through the skins of banana, apple and pear fruits. Journal of the Science of Food and Agriculture, 35, 322–331.

    Article  CAS  Google Scholar 

  • Blackbourn, H. D., Jeger, M. J., John, P., & Thompson, A. K. (1990). Inhibition of degreening in the peel of bananas ripened at tropical temperatures, III changes in plastid ultrastructure and chlorophyll-protein complexes accompanying ripening in bananas and plantains. Annals of Applied Biology, 117, 147–161.

    Article  CAS  Google Scholar 

  • Bowden, A. P. (1993). Modified atmosphere packaging of ‘Cavendish’ and ‘Apple’ bananas. MSc thesis Cranfield University.

    Google Scholar 

  • Broughton, W. J., Chan, B. E., & Kho, H. L. (1978). Maturation of Malaysian fruits. II. Storage conditions and ripening of banana Musa sapientum var ‘Pisang Emas’. Malaysian Agricultural Research and Development Institute. Research Bulletin, 7, 28–37.

    Google Scholar 

  • Burg, S. P. (2004). Postharvest physiology and hypobaric storage of fresh produce. Wallingford: CAB International.

    Book  Google Scholar 

  • Burg, S. P., & Burg, E. A. (1965). Relationship between ethylene production and ripening of bananas. Botanical Gazette, 126, 200–204.

    Article  CAS  Google Scholar 

  • Burg, S. P., & Burg, E. A. (1967). Molecular requirements for the biological activity of ethylene. Plant Physiology, 42, 144–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamara, D., Illeperuma, K., & Galappatty, P. T. (2000). Effect of modified atmosphere and ethylene absorbers on extension of storage life of ‘Kolikuttu’ banana at ambient temperature. Fruits, 55, 381–388.

    CAS  Google Scholar 

  • Chauhan, O. P., Raju, P. S., Dasgupta, D. K., & Bawa, A. S. (2006). Modified atmosphere packaging of banana (cv. Pachbale) with ethylene, carbon di-oxide and moisture scrubbers and effect on its ripening behaviour. American Journal of Food Technology, 1, 179–189.

    Article  CAS  Google Scholar 

  • Cheng, G., Yang, E., Lu, W., Jia, Y., Jiang, Y., & Duan, X. (2009). Effect of nitric oxide on ethylene synthesis and softening of banana fruit slice during ripening. Journal of Agricultural and Food Chemistry, 57, 5799–5804.

    Article  CAS  PubMed  Google Scholar 

  • Copisarow, M. (1935). The metabolism of fruit and vegetables in relation to their preservation. Journal of Pomology, XIV, 9–18.

    Google Scholar 

  • Davies, K., Hobson, G. E., & Grierson, D. (2006). Silver ions inhibit the ethylene-stimulated production of ripening-related mRNAs in tomato. Plant Cell and Environment, 11, 729–738.

    Article  Google Scholar 

  • De Martino, G., Mencarelli, F., & Golding, J. B. (2007). Preliminary investigation into the uneven ripening of banana (Musa sp.) peel. New Zealand Journal of Crop and Horticultural Science, 35, 193–199.

    Article  Google Scholar 

  • Deaquiz, Y. A., Álvarez-Herrera, J., & Fischer, G. (2014). Etileno y 1-MCP afectan el comportamiento poscosecha de frutos de pitahaya amarilla (Selenicereus megalanthus Haw.). Agronomía Colombiana, 32, 44–51.

    Article  Google Scholar 

  • Deng, Z., Jung, J., Simonsen, J., & Zhao, Y. (2017). Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate). Food Chemistry, 232, 359–368.

    Article  CAS  PubMed  Google Scholar 

  • Domínguez, M., Domínguez-Puigjaner, E., Saladié, M., & Vendrell, M. (1998). Effect of inhibitors of ethylene biosynthesis and action on ripening of bananas. Acta Horticulturae, 490, 519–528.

    Article  Google Scholar 

  • Dubery, I. A., van Rensburg, L. J., & Schabort, J. C. (1984). Malic enzyme activity and related Biochemical aspects during ripening of γ-irradiated mango fruit. Phytochemistry, 23, 1383–1386.

    Article  CAS  Google Scholar 

  • Farag, K. M., & Palta, J. P. (1993). Use of lysophosphatidylethanolamine, a natural lipid to retard tomato leaf and fruit senescence. Physiologia Plantarum, 87, 515–524.

    Article  CAS  Google Scholar 

  • Fernández-Falcón, M., Borges, A. A., & Borges-Pérez, A. (2003). Induced resistance to Fusarium wilt of banana by exogenous applications of indole acetic acid. Phytoprotection, 84, 149–153.

    Article  Google Scholar 

  • Finger, F. L., Puschmann, R., & Santos Barros, R. (1995). Effects of water loss on respiration, ethylene production and ripening of banana fruit. Revista Brasileira de Fisiologia Vegetal, 7, 115–118.

    CAS  Google Scholar 

  • George, J. B., & Marriott, J. (1982). The effect of some storage conditions on the storage life of plantains. Acta Horticulturae, 158, 439–447.

    Google Scholar 

  • George, J. B., & Marriott, J. (1985). The effect of some storage conditions on the storage life of plantains. Acta Horticulturae, 158, 439–448.

    Article  Google Scholar 

  • Hardenburg, R. E., Watada, A. E., & Wang C. Y. (1990). The commercial storage of fruits, vegetables and florist and nursery stocks. United States Department of Agriculture, Agricultural Research Service, Agriculture Handbook 66.

    Google Scholar 

  • Harris, D. R., Seberry, J. A., Wills, L. J., & Spohr, L. J. (2000). Effect of fruit maturity on efficiency of 1-methylcyclopropene to delay the ripening of bananas. Postharvest Biology and Technology, 20, 303–308.

    Article  CAS  Google Scholar 

  • Harvey R. B. (1928). Artificial ripening of fruits and vegetables. https://conservancy.umn.edu/bitstream/handle/11299/.../mn_1000_b_247.pdf?...1

  • Hesselman, C. W., & Freebairn, H. T. (1969). Rate of ripening of initiated bananas as influenced by oxygen and ethylene. Journal of the American Society for Horticultural Science, 94, 635.

    CAS  Google Scholar 

  • Hong, J. H., Hwanga, S. K., Chunga, G., & Cowan, A. K. (2007). Influence of lysophosphatidylethanolamine application on fruit quality of Thompson seedless grapes. Journal of Applied Horticulture, 9, 112–114.

    Google Scholar 

  • Imahori, Y., Yamamoto, K., Tanaka, H., & Bai, J. (2013). Residual effects of low oxygen storage of mature green fruit on ripening processes and ester biosynthesis during ripening in bananas. Postharvest Biology and Technology, 77, 19–27.

    Article  CAS  Google Scholar 

  • Jansasithorn, R., & Kanlavanarat, S. (2006). Effect of 1-MCP on physiological changes in banana ´Khai´. Acta Horticulturae, 712, 723–728.

    Article  CAS  Google Scholar 

  • Jiang, Y., Joyce, D. C., & Macnish, A. J. (2000). Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. Journal of Plant Growth Regulation, 19, 106–111.

    Article  CAS  PubMed  Google Scholar 

  • Joyce, D. C., Macnish, A. J., Hofman, P. J., Simons, D. H., & Reid, M. S. (1999). Use of 1-methylcyclopropene to modulate banana ripening. In A. K. Kanellis, C. Chang, H. Klee, A. B. Bleecker, J. C. Pech, & D. Grierson (Eds.), Biology and biotechnology of the plant hormone Ethylene II (pp. 189–190). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Kahan, R. S., Nadel-Shifman, M., Temkin-Gorodeiski, N., Eisenberg, E., Zauberman, G., & Aharoni, Y. (1968). Effects of radiation on the ripening of bananas and avocado pears. In Preservation of fruits and vegetables by irradiation (pp. 3–11). Vienna: International Atomic Energy Agency.

    Google Scholar 

  • Kanellis, A. K., Loulakakis, K. A., Hassan, M., & Roubelakis-Angelakis, K. A. (1993). Biochemical and molecular aspects of low oxygen action on fruit ripening. In C. J. Pech, A. Latche, & C. Balague (Eds.), Cellular and molecular aspects of the plant hormone ethylene (pp. 117–122). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Kang, C. K., Yang, Y. L., Chung, G. H., & Palta, J. P. (2003). Ripening promoting and ethylene evolution in red pepper (Capsicum annuum) as influenced by newly developed formulations of a natural lipid, lysophosphatidylethanolamine. Acta Horticulturae, 628, 317–322.

    Article  CAS  Google Scholar 

  • Kao, H. Y. (1971). Extension of storage life of bananas by gamma irradiation. In Disinfestation of fruit by irradiation (pp. 125–136). Vienna: International Atomic Energy Agency.

    Google Scholar 

  • Klieber, A., Bagnato, N., Barrett, R., & Sedgley, M. (2002). Effect of post-ripening nitrogen atmosphere storage on banana shelf-life, visual appearance and aroma. Postharvest Biology and Technology, 25, 15–24.

    Article  CAS  Google Scholar 

  • Kulkarni, S. G., Kudachikar, V. B., & Prakash, M. K. (2011). Studies on physico-chemical changes during artificial ripening of banana (Musa sp) variety ‘Robusta’. Journal of Food Science and Technology, 48, 730–734.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., & Brahmachari, V. S. (2005). Effect of chemicals and packaging on ripening and storage behaviour of banana cv. Harichhaal (AAA) at ambient temperature. Horticultural Journal, 18, 86–90.

    Google Scholar 

  • Leng, P., Yuan, B., & Guo, Y. (2014). The role of abscisic acid in fruit ripening and responses to abiotic stress. Journal of Experimental Botany, 65, 4577–4588.

    Article  CAS  PubMed  Google Scholar 

  • Littmann, M. D. (1972). Effect of water loss on the ripening of climacteric fruits. Queensland Journal of Agriculture and Animal Science, 29, 103–113.

    Google Scholar 

  • Liu, F. W. (1976a). Correlation between banana storage life and minimum treatment time required for ethylene response. Journal of the American Society for Horticultural Science, 101, 63–65.

    CAS  Google Scholar 

  • Liu, F. W. (1976b). Banana response to low concentration of ethylene. Journal of the American Society for Horticultural Science, 101, 222–225.

    CAS  Google Scholar 

  • Liu, F. W. (1976c). Storing ethylene pretreated bananas in controlled atmosphere and hypobared air. Journal of the American Society for Horticultural Science, 101, 198–201.

    CAS  Google Scholar 

  • Liu, R., Wang, Y., Qin, G., & Tian, S. (2016). Molecular basis of 1-methylcyclopropene regulating organic acid metabolism in apple fruit during storage. Postharvest Biology and Technology, 117, 57–63.

    Article  CAS  Google Scholar 

  • Lohani, S., Trivedi, P. K., & Nath, P. (2004). Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: Effect of 1-MCP, ABA and IAA. Postharvest Biology and Technology, 31(2), 119–126.

    Article  CAS  Google Scholar 

  • Lurie, S. (2008). Regulation of ethylene biosynthesis in fruits by aminoethoxyvinyl glycine and 1-Methylcyclopropene. Acta Horticulturae, 796, 31–41.

    Article  CAS  Google Scholar 

  • Maneenuam, T., & Doorn, S. K. (2007). High oxygen levels promote peel spotting in banana fruit. Postharvest Biology and Technology, 43, 128–132.

    Article  CAS  Google Scholar 

  • Manjunatha, G., Lokesh, V., & Bhagyalakshmi, N. (2012). Nitric oxide-induced enhancement of banana fruit attributes and keeping quality. Acta Horticulturae, 934, 799–806.

    Article  Google Scholar 

  • Maqbool, M., Ali, A., Ramachandran, S., Smith, D. R., & Alderson, P. G. (2010). Control of postharvest anthracnose of banana using a new edible composition coating. Crop Protection, 29, 1136–1141.

    Article  CAS  Google Scholar 

  • Marchal, J., & Nolin, J. (1990). Fruit quality. Pre- and post-harvest physiology. Fruits Special issue, 119–122.

    Google Scholar 

  • Marchal, J., Nolin, J., & Letorey, J. (1988). Influence sur la maturation de I’enrobage de bananes avec du Semperfresh. Fruits, 43, 447–453.

    Google Scholar 

  • Matsumura, S., Tomizawa, N., Toki, A., Nishikawa, K., & Toshima, K. (1999). Novel poly(vinyl alcohol)-degrading enzyme and the degradation mechanism. Macromolecules, 23, 7753–7761.

    Article  CAS  Google Scholar 

  • Maxie, E. C., & Sommer, N. F. (1968). Changes in some chemical constituents in irradiated fruits and vegetables. In Preservation of fruits and vegetables by radiation (pp. 39–56). Vienna: International Atomic Energy Agency.

    Google Scholar 

  • Maxie, E. C., Amezquita, R., Hassan, B. M., & Johnson, C. F. (1968). Effect of gamma irradiation on the ripening of banana fruits. Proceedings of the American Society for Horticultural Science, 92, 235–244.

    CAS  Google Scholar 

  • Mercantilia. (1989). Guide to food transport – fruit and vegetables. Copenhagen: Mercantilia Publishers.

    Google Scholar 

  • Mladenoska, I. (2013). The preservation of the whole banana fruits by utilization of coconut oil-beeswax edible coatings. Proceedings of the 10th Symposium “Novel technologies and Economic Development”, Leskovac, pp. 13–20.

    Google Scholar 

  • Moradinezhad, F., Sedgley, M., Klieber, A., & Able, A. J. (2008). Variability of responses to 1-methycyclopropene by banana: Influence of time of year at harvest and fruit position in the bunch. Annual Applied Biology, 152, 223–234.

    Article  CAS  Google Scholar 

  • Moric, C. L. S., dos Passosa, N. A., Oliveirab, J. E., Mattosod, L. H. C., Moric, F. A., Carvalhoc, A. G., Fonsecac, A. S., & Tonolica, G. H. D. (2014). Electrospinning of Zzein/tannin bio-nanofibers. Industrial Crops and Products, 52, 298–304.

    Article  CAS  Google Scholar 

  • Murata, T. (2006). Physiological and biochemical studies of chilling injury in bananas. Physiologia Plantarum, 22, 401–411.

    Article  Google Scholar 

  • Nair, H., & Tung, H. F. (1988). Postharvest physiology and storage of Pisang Mas. Proceedings of the UKM simposium Biologi Kebangsaan ketiga, Kuala Lumpur, Nov. 22–24.

    Google Scholar 

  • Ncama, K., Magwaza, L. S., Mditshwa, A., & Tesfay, S. Z. (2018). Plant-based edible coatings for managing postharvest quality of fresh horticultural produce. Food Packaging and Shelf-life, 16, 157–167.

    Article  Google Scholar 

  • Ozgen, M., Farag, K. M., Ozgen, G., & Palta, J. P. (2005). Lysophosphatidylethanolamine accelerates color development and promotes shelf life of cranberries. HortSciences, 40, 127–130.

    Article  CAS  Google Scholar 

  • Palomer, X., Roig-Villanova, I., Grima-Calvo, D., & Vendrell, M. (2005). Effects of nitrous oxide treatment on the postharvest ripening of banana fruit. Postharvest Biology and Technology, 36, 167–175.

    Article  CAS  Google Scholar 

  • Pan, S. L., Huang, C. Y., Wang, H. B., Pang, X. Q., Huang, X. M., & Zhang, Z. Q. (2007). Hydrogen peroxide induced chilling-resistance of postharvest banana fruit. Journal of South China Agricultural University, 28, 34–37.

    CAS  Google Scholar 

  • Pantastico, E. B. (1975). Editor – Postharvest physiology, handling and utilization of tropical and sub-tropical fruits and vegetables. Westpoint: AVI Publishing Co.

    Google Scholar 

  • Pathak, N., Asif, M. H., Dhawan, P., Srivastava, M. K., & Nath, P. (2003). Expression and activities of ethylene biosynthesis enzymes during ripening in banana fruit and effect of 1-MCP treatment. Plant Growth Regulation, 40, 11–19.

    Article  CAS  Google Scholar 

  • Pelayo, C., Eduardo, V.de B. Vilas-Boas, Benichou, M., & Kader, A. A. (2003). Variability in responses of partially ripe bananas to 1-methylcyclopropene. Postharvest Biology and Technology, 28, 75–85.

    Article  CAS  Google Scholar 

  • Pinheiro, A. C. M., Boas, E.V.deB.V, & Mesquita, C. T. (2005). Action of 1-methylcyclopropene (1-MCP) on shelf life of ‘Apple’ banana. Revista Brasileira de Fruticultura, 27, 25–28.

    Article  Google Scholar 

  • Purgatto, E., Lajolo, F. M., Oliveira do Nascimento, J. R., & Cordenunsi, B. R. (2001). Inhibition of β-amylase activity, starch degradation and sucrose formation by indole-3-acetic acid during banana ripening. Planta, 212, 823–828.

    Article  CAS  PubMed  Google Scholar 

  • Purgatto, E., Olivera do Nascimento, J. R., Lajolo, F. M., & Cordenunsi, B. R. (2002). The onset of starch degradation during banana ripening is concomitant to changes in the control of free and conjugated form of indole-3-acetic acid. Journal of Plant Physiology, 159, 1105–1111.

    Article  CAS  Google Scholar 

  • Quazi, M. H., & Freebairn, H. T. (1970). The influence of ethylene oxygen and carbon dioxide on ripening of bananas. Botanical Gazette, 131, 5–14.

    Article  CAS  Google Scholar 

  • Robinson, J. C., & Saúco, V. G. (2010). Bananas and plantains (2nd ed.). Wallingford: CAB International.

    Book  Google Scholar 

  • Rossetto, M. R. M., Purgatto, E., do Nascimento, J. R. O., Lajolo, F. M., & Cordenuns, B. R. (2003). Effects of gibberellic acid on sucrose accumulation and sucrose biosynthesizing enzymes activity during banana ripening. Plant Growth Regulation, 41, 207–214.

    Article  CAS  Google Scholar 

  • Satyan, S., Scott, K. J., & Graham, D. (1992). Storage of banana bunches in sealed polyethylene tubes. Journal of Horticultural Science, 67, 283–287.

    Article  Google Scholar 

  • Scott, K. J., Blake, J. R., Strachan, G., Tugwell, B. L., & McGlasson, W. B. (1971). Transport of bananas at ambient temperatures using polyethylene bags. Tropical Agriculture, 48, 245–253.

    Google Scholar 

  • SeaLand. (1991). Shipping guide to perishables. SeaLand Services Inc., P.O. Box 800, Iselim, New Jersey 08830.

    Google Scholar 

  • Senna, M. M. H., Al-Shamrani, K. M., & Al-Arifi, A. S. (2014). Edible coating for shelf-life extension of fresh banana fruit based on gamma irradiated plasticized poly(vinyl alcohol)/carboxymethyl cellulose/tannin composites. Materials Sciences and Applications, 5, 395–415.

    Article  CAS  Google Scholar 

  • Seymour, G. B., Thompson, A. K., & John, P. (1987). Inhibition of degreening in the peel of bananas ripened at tropical temperatures. 1. Effect of high temperature on changes in the pulp and peel during ripening. Annals of Applied Biology, 110, 145–151.

    Article  Google Scholar 

  • Seymour, G. B., John, P., & Thompson, A. K. (1987a). Inhibition of degreening in the peel of bananas ripened at tropical temperature. 2. Role of ethylene, oxygen and carbon dioxide. Annals of Applied Biology, 110, 153–161.

    Article  CAS  Google Scholar 

  • Shorter, A. J., Scott, K. J., & Graham, D. (1987). Controlled atmosphere storage of bananas in bunches at ambient temperatures. CSIRO Food Research Queensland, 47, 61–63.

    Google Scholar 

  • Sisler, E. C. (1991). Ethylene-binding components in plants. In A. K. Mattoo & J. E. Suttle (Eds.), The plant hormone ethylene (pp. 81–99). Boca Raton: CRC Press.

    Google Scholar 

  • Sisler, E. C., & Blankenship, S. M. (1993). Diazocyclopentadiene (DACP) a light sensitive reagent for the ethylene receptor in plants. Plant Growth Regulation, 12, 125–132.

    Article  CAS  Google Scholar 

  • Sisler, E. C., & Lallu, N. (1994). Effect of diazocyclopentadiene (DACP) on tomato fruits harvested at different ripening stages. Postharvest Biology and Technology, 4, 245–254.

    Article  CAS  Google Scholar 

  • Snowdon, A. L. (1990). A colour atlas of postharvest diseases and disorders of fruits and vegetables. In General introduction and fruits (Vol. 1). London: Wolfe Scientific Ltd.

    Google Scholar 

  • Sun, L., Sun, Y., Zhang, M., Wang, L., Ren, J., & Cui, M. (2012). Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiology, 158, 283–298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Supapvanich, S., & Promyou, S. (2013). Efficiency of salicylic acid application on postharvest perishable crops. In S. Hayat & A. A. M. Alyemei (Eds.), Salicylic acid: Plant growth and development (pp. 339–355). New York: Springer.

    Chapter  Google Scholar 

  • Surendranathan, K. K., & Nair, P. M. (1972). Properties of acidic and alkaline fructose 1,6- diphosphatease in gamma irradiated banana. Phytochemistry, 11, 119–123.

    Article  CAS  Google Scholar 

  • Surendranathan, K. K., & Nair, P. M. (1973). Alterations in carbohydrate metabolism of gamma irradiated Cavendish banana. Phytochemistry, 12, 241–246.

    Article  CAS  Google Scholar 

  • Surendranathan, K. K., & Nair, P. M. (1976). Stimulation of the glyoxalate shunt in gamma irradiated banana. Phytochemistry, 15, 371–774.

    Article  CAS  Google Scholar 

  • Tchango, J. T., Achard, R., & Ngalani, J. A. (1999). Etude des stades de recolte pour l’exportation par bateau, vers l’Europe, de trois cultivars de plantains produits au Cameroun. Fruits, 54, 215–224.

    Google Scholar 

  • Thomas, P. (1986). Radiation preservation of foods of plant origin. III. Tropical fruits: bananas, mangoes, and papayas. CRC Critical Reviews in Food Science and Nutrition, 23, 147–206.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, P., Dharkar, S. D., & Sreenivasan, A. (1971). Effect of gamma irradiation on the postharvest physiology of five banana varieties grown in India. Food Science, 36, 243–248.

    Article  CAS  Google Scholar 

  • Thompson, A. K., & Burden, O. J. (1995). Harvesting and fruit care. In S. Gowen (Ed.), Bananas and plantains (pp. 403–433). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Thompson, A. K., Been, B. O., & Perkins, C. (1972). Handling, storage and marketing of plantains. Proceedings of the Tropical Region of the American Society of Horticultural Science, 16, 205–212.

    Google Scholar 

  • Thompson, A. K., Been, B. O., & Perkins, C. (1974). Effects of humidity on ripening of plantain bananas. Experientia, 30, 35–36.

    Article  Google Scholar 

  • Tiangco, E. L., Agillon, A. B., & Lizada, M. C. C. (1987). Modified atmosphere storage of ‘Saba’ bananas. ASEAN Food Journal, 3, 112–116.

    Google Scholar 

  • Toan, V. N., Hoang, V. L., Tan, V. L., Thanh, D. C., & Luan, V. L. (2011). Effects of aminoethoxyvinylglycine (AVG) spraying time at preharvest stage to ethylene biosynthesis of Cavendish banana (Musa AAA). Journal of Agricultural Science, 3, 206–211.

    Google Scholar 

  • Toan, V. N., Thanh, D. C., Le, V. H., Le, V. T., Truong, M. H., Thi Le, L. T., & Thi Thong, Q. A. (2010). Effect of near-harvest application of aminothoxyvinylglycine (AVG) on banana fruits during postharvest storage. Acta Horticulturae, 875, 163–168.

    Article  Google Scholar 

  • Tongdee, S. C. (1988). Banana postharvest handling improvements. Bangkok: Report of the Thailand Institute of Science and Technology Research.

    Google Scholar 

  • Truter, A. B., & Combrink, J. C. (1990). Controlled and modified atmosphere storage of bananas. Acta Horticulturae, 275, 631–638.

    Article  Google Scholar 

  • Ullah, H., Ahmad, S., Anwar, R., & Thompson, A. K. (2006). Effect of high humidity and water on the quality and ripening of banana fruit. International Journal of Biology, 8, 828–831.

    Google Scholar 

  • Vendrell, M. (1969). Acceleration and delay of ripening in banana fruit tissue by gibberellic acid. Australian Journal of Biological Sciences, 23, 553–559.

    Article  Google Scholar 

  • Vendrell, M. (1970). Acceleration and delay of ripening in banana fruit tissue by gibberellic acid. Australian Journal of Biological Sciences, 23, 553–560.

    Article  CAS  Google Scholar 

  • Wade, N. L. (1974). Effects of O2 concentration and Ethephon upon the respiration and ripening of banana fruits. Journal of Experimental Botany, 25, 955–964.

    Article  CAS  Google Scholar 

  • Wang, Y., Luo, Z., & Du, R. (2015a). Nitric oxide delays chlorophyll degradation and enhances antioxidant activity in banana fruits after cold storage. Acta Physiologiae Plantarum, 37, 74. https://doi.org/10.1007/s11738-015-1821-z.

    Article  CAS  Google Scholar 

  • Wang, Y., Luo, Z., Khan, Z. U., Mao, L., & Ying, T. (2015b). Effect of nitric oxide on energy metabolism in postharvest banana fruit in response to chilling stress. Postharvest Biology and Technology, 108, 21–27.

    Article  CAS  Google Scholar 

  • Wardlaw, C. W. (1937). Tropical fruits and vegetables: An account of their storage and transport. Low Temperature Research Station, Trinidad Memoir 7, Reprinted from Tropical Agriculture Trinidad, 14.

    Google Scholar 

  • Wardlaw, C. W., & Leonard, E. R. (1940). The respiration of bananas during ripening at tropical temperatures, studies in tropical fruits. Low Temperature Research Station, Memoir 17.

    Google Scholar 

  • Wei, Y., & Thompson A. K. (1993). Modified atmosphere packaging of diploid bananas (Musa AA). Post-harvest Treatment of Fruit and Vegetables. COST’94 Workshop, September 14 to 15 1993, Leuven.

    Google Scholar 

  • Wills, R. B. H., McGlasson, B., Graham, D., & Joyce, D. (1998). Postharvest: An introduction to the physiology and handling of fruit, vegetables and ornamentals (4th ed.). Wallingford: CAB. International.

    Google Scholar 

  • Wu, B., Guo, Q., Li, Q., Ha, Y., Li, X., & Chen, W. (2014). Impact of postharvest nitric oxide treatment on antioxidant enzymes and related genes in banana fruit in response to chilling tolerance. Postharvest Biology and Technology, 92, 157–163.

    Article  CAS  Google Scholar 

  • Yang, S. F., & Pratt, H. K. (1978). The physiology of ethylene in wounded plant tissue. In G. Kahl (Ed.), Biochemistry of wounded plant tissues (pp. 595–622). Berlin: Walter de Gruyter.

    Chapter  Google Scholar 

  • Yang, S. F., Adams, D. O., Lizada, C., Yu, Y., Bradford, K. J., Cameron, A. C., & Hoffman, N. E. (1979). Mechanism and regulation of ethylene biosynthesis. In F. Skoog (Ed.), Plant growth substances 1979 (Proceedings in Life Sciences) (pp. 219–229). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Yao, A. K., Koffi, D. M., Irié, Z. B., & Niamke, S. L. (2014). Conservation de la banane plantain (Musa AAB) à l’état vert par l’utilisation de films de polyéthylène de différentes épaisseurs. Journal of Animal & Plant Sciences, 23, 3677–3690.

    Google Scholar 

  • Zaman, W., Paul, D., Alam, K., Ibrahim, M., & Hassan, P. (2007). Shelf-life extension of banana (Musa sapientum) by gamma radiation. Journal of Bio-Science, 15, 47–53.

    Article  Google Scholar 

  • Zhang, M., Leng, P., Zhang, G., & Li, X. (2009). Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology, 166, 1241–1252.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Yuan, B., & Leng, P. (2009a). Cloning 9-cis-epoxycarotenoid dioxygenase (NCED) genes and the role of ABA on fruit ripening. Plant Signalling and Behaviour, 4, 460–463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thompson, A.K., Supapvanich, S., Sirison, J. (2019). Postharvest Treatments to Control Ripening. In: Banana Ripening. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-030-27739-0_4

Download citation

Publish with us

Policies and ethics