Skip to main content

Intersection Homology: Definition, Properties

  • Chapter
  • First Online:
  • 3146 Accesses

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 281))

Abstract

In this chapter, we introduce intersection homology from a chain-theoretic perspective, as originally developed by Goresky–MacPherson

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Recall that a formal linear combination ζ =∑ σζ σ ⋅ σ of singular k-simplices in X is a locally finite k-chain if for each x ∈ X there is an open neighborhood U x of x in X such that the set

    $$\displaystyle \begin{aligned}\{ \zeta _{\sigma} \mid \zeta _{\sigma} \neq 0, \sigma^{-1}(U_x) \neq \emptyset \}\end{aligned}$$

    is finite.

  2. 2.

    In the notations of Figure 2.4, σ = AB, \({\hat {\sigma }}=C\), and D X(σ) = EC ∪ CF.

  3. 3.

    We leave it as an exercise for the reader to formulate and prove the corresponding Mayer–Vietoris result for intersection homology groups; it is a simple adaptation of the analogous result in simplicial/singular homology.

References

  1. Banagl, M.: Topological Invariants of Stratified Spaces. Springer Monographs in Mathematics. Springer, Berlin (2007)

    Google Scholar 

  2. Borel, A.: Intersection cohomology. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2008)

    MATH  Google Scholar 

  3. Borel, A., Moore, J.C.: Homology theory for locally compact spaces. Michigan Math. J. 7, 137–159 (1960)

    Article  MathSciNet  Google Scholar 

  4. Friedman, G.: Singular Intersection Homology. http://faculty.tcu.edu/gfriedman/IHbook.pdf

  5. Goresky, M.: Triangulation of stratified objects. Proc. Am. Math. Soc. 72(1), 193–200 (1978)

    Article  MathSciNet  Google Scholar 

  6. Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19(2), 135–162 (1980)

    Article  MathSciNet  Google Scholar 

  7. Goresky, M., MacPherson, R.: Morse theory and intersection homology theory. In: Analysis and Topology on Singular Spaces, II, III (Luminy, 1981). Astérisque, vol. 101, pp. 135–192. Soc. Math. France, Paris (1983)

    Article  MathSciNet  Google Scholar 

  8. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  9. King, H.C.: Topological invariance of intersection homology without sheaves. Topology Appl. 20(2), 149–160 (1985)

    Article  MathSciNet  Google Scholar 

  10. Kirwan, F., Woolf, J.: An Introduction to Intersection Homology Theory, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL (2006)

    Google Scholar 

  11. MacPherson, R. Vilonen, K.: Elementary construction of perverse sheaves. Invent. Math. 84(2), 403–435 (1986)

    Article  MathSciNet  Google Scholar 

  12. Mather, J.: Notes on topological stability. Bull. Amer. Math. Soc. (N.S.) 49(4), 475–506 (2012)

    Article  MathSciNet  Google Scholar 

  13. McCrory, C.: Cone complexes and PL transversality. Trans. Am. Math. Soc. 207, 269–291 (1975)

    Article  MathSciNet  Google Scholar 

  14. Siegel, P.H.: Witt spaces: a geometric cycle theory for KO-homology at odd primes. Amer. J. Math. 105(5), 1067–1105 (1983)

    Article  MathSciNet  Google Scholar 

  15. Thom, R.: Ensembles et morphismes stratifiés. Bull. Amer. Math. Soc. 75, 240–284 (1969)

    Article  MathSciNet  Google Scholar 

  16. Verdier, J.-L.: Stratifications de Whitney et théorème de Bertini-Sard. Invent. Math. 36, 295–312 (1976)

    Article  MathSciNet  Google Scholar 

  17. Whitney, H.: Tangents to an analytic variety. Ann. Math. (2) 81, 496–549 (1965)

    Article  MathSciNet  Google Scholar 

  18. Whitney, H.: Local properties of analytic varieties. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 205–244. Princeton University Press, Princeton, NJ (1965)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maxim, L.G. (2019). Intersection Homology: Definition, Properties. In: Intersection Homology & Perverse Sheaves. Graduate Texts in Mathematics, vol 281. Springer, Cham. https://doi.org/10.1007/978-3-030-27644-7_2

Download citation

Publish with us

Policies and ethics